【題目】如圖,在△ABC中,AB = AC,點D、E分別是AB、AC的中點,點F是BE、CD的交點,請寫出圖中兩組全等的三角形,并選出其中一組加以證明.(要求:寫出證明過程中的重要依據(jù))
【答案】△ABE≌△ACD,△BCD≌△CBE或△BFD≌△CFE(寫出兩個即可),選擇一個證明即可.
【解析】利用全等三角形的判定定理證明方法,選擇證明即可.
△ABE≌△ACD,△BCD≌△CBE或△BFD≌△CFE(寫出兩個即可).
(1)選△ABE≌△ACD,
證明:∵點D、E分別是AB、AC的中點,
∴AD=AB,AE=AC,
又∵AB=AC,∴AD=AE,
在△ABE和△ACD中,
∴△ABE≌△ACD(SAS)
(2)選△BCD≌△CBE.
證明:∵AB=AC,
∴∠ABC=∠ACB(等邊對等角)
∵點D、E分別是AB、AC的中點,
∴BD=AB,CE=AC,∴BD=CE,
在△BCD和△CBE中, ,
∴△BCD≌△CBE.
(3)選△BFD≌△CFE.
證明:∵點D、E分別是AB、AC的中點,
∴AD=AB,AE=AC.
在△ABE和△ACD中, ,
∴△ABE≌△ACD(SAS)
∴∠ABE=∠ACD(全等三角形對應角相等)
∵點D、E分別是AB、AC的中點,
∴BD=AB,CE=AC,
∴BD=CE,
在△BFD和△CFE中, ,
∴△BFD≌△CFE(AAS).
科目:初中數(shù)學 來源: 題型:
【題目】如圖在平面直角坐標系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去…若點A(,0),B(0,2),則點B2018的坐標為( )
A. (6048,0)B. (6054,0)C. (6048,2)D. (6054,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在某筆直路段MN內(nèi)小車行駛的最高限速60千米/小時.交通部門為了檢測車輛是否在此路段超速行駛,在公路MN旁設立了觀測點C,已知∠CAN=45°,∠CBN=60°,BC=120米.
(1)求測速點C到該公路的距離;
(2)若測得一小車從A點到達點B行駛了3秒,請通過計算判斷此車是否超速.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店經(jīng)銷一種泰山旅游紀念品,4月份的營業(yè)額為2000元,為擴大銷售量,5月份該商店對這種紀念品打9折銷售,結(jié)果銷售量增加20件,營業(yè)額增加700元.
(1)求該種紀念品4月份的銷售價格;
(2)若4月份銷售這種紀念品獲利800元,5月份銷售這種紀念品獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)分別填人相應的集合里.
﹣5,﹣2.626626662…,0,﹣π,﹣,0.12,﹣(﹣6).
(1)正數(shù)集合:{____________________…};
(2)無理數(shù)集合:{___________________ …};
(3)負整數(shù)集合:{__________________…};
(4)分數(shù)集合:{___________________ …}.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC中,BC=6,D、E分別在BC、AC上,且DE∥AC,MN是△BDE的中位線.將線段DE從BD=2處開始向AC平移,當點D與點C重合時停止運動,則在運動過程中線段MN所掃過的區(qū)域面積為_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國中東部地區(qū)霧霾天氣趨于嚴重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進價是200元/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務.
(1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;
(2)當售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小山的頂部是一塊平地,在這塊平地上有一高壓輸電的鐵架,小山的斜坡的坡度,斜坡BD的長是50米,在山坡的坡底B處測得鐵架頂端A的仰角為,在山坡的坡頂D處測得鐵架頂端A的仰角為,(1)求小山的高度;(2)求鐵架的高度。(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某面粉加工廠加工的面粉,用每袋可裝10g面粉的袋子裝了200袋經(jīng)過稱重,質(zhì)量超過標準質(zhì)量10kg的用正數(shù)表示,質(zhì)量低于標準質(zhì)量10kg的用負數(shù)表示,結(jié)果記錄如下
與標準質(zhì)量的偏差(kg) | ﹣1.5 | ﹣1 | ﹣0.5 | 0 | 0.5 | 1 | 2 |
袋數(shù)(袋) | 40 | 30 | 10 | 25 | 40 | 20 | 35 |
(1)求這批面粉的總質(zhì)量;
(2)如果100kg小麥加工80kg面粉,那么這批面粉是由多少千克小麥加工的?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com