【題目】如圖,海中有一個(gè)小島,它的周圍14海里內(nèi)有暗礁,在小島正西方有一點(diǎn)測得在北偏東60°方向上有一燈塔,燈塔在小島北偏東15°方向上20海里處,漁船跟蹤魚群沿方向航行,每小時(shí)航行海里.

1)如果漁船不改變航向繼續(xù)航行,有沒有觸礁危險(xiǎn)?請說明理由.

2)求漁船從點(diǎn)處航行到燈塔,需要多少小時(shí)?

【答案】1)漁船不改變航向繼續(xù)航行,沒有觸礁危險(xiǎn),理由見解析;(2)漁船從A點(diǎn)處航行到燈塔C,需要小時(shí).

【解析】

1)作BHACH,根據(jù)余弦的概念求出BH,比較即可判斷;
2)根據(jù)正切的概念求出AH,求出AC的長,根據(jù)漁船的速度計(jì)算即可.

解:(1)漁船不改變航向繼續(xù)航行,沒有觸礁危險(xiǎn).
BHACH,


由題意得,∠CAB=30°,∠ABC=105°
則∠ABH=60°,∠HBC=45°

,

∴漁船不改變航向繼續(xù)航行,沒有觸礁危險(xiǎn);

2,

,

,

則漁船從A點(diǎn)處航行到燈塔C,需要的時(shí)間為:小時(shí),

答:漁船從A點(diǎn)處航行到燈塔C,需要小時(shí).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明過程:

已知:如圖,∠D=110°,∠EFD=70°,∠1=2

求證:∠3=B

證明:∵∠D=110°, EFD=70°(已知)

∴∠D+EFD=180°

AD______

又∵∠1=2(已知)

_____BC ( 內(nèi)錯(cuò)角相等,兩直線平行)

EF_____ ( )

∴∠3=B(兩直線平行,同位角相等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)函數(shù)y與自變量x的部分對應(yīng)值如下表:

1)從我們已學(xué)過的函數(shù)判斷:yx 函數(shù),yx的函數(shù)關(guān)系式為 ;

2)根據(jù)函數(shù)圖像,當(dāng)-2 x -時(shí),求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】能判定四邊形是平行四邊形的是(

A.ABCDB. ABCD,

C.D.,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,點(diǎn)A的坐標(biāo)是,點(diǎn)C的縱坐標(biāo)是4,則B點(diǎn)的縱坐標(biāo)是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+ca≠0)的圖象過點(diǎn)M(﹣2, ),頂點(diǎn)坐標(biāo)為N(﹣1, ),且與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).

(1)求拋物線的解析式;

(2)點(diǎn)P為拋物線對稱軸上的動(dòng)點(diǎn),當(dāng)PBC為等腰三角形時(shí),求點(diǎn)P的坐標(biāo);

(3)在直線AC上是否存在一點(diǎn)Q,使QBM的周長最?若存在,求出Q點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=BCD=90°,BC=CD,CEAD,垂足為E,求證:AE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠A90°+x°,∠B90°﹣x°,∠CED90°,4C﹣∠D30°,射線EFAC

1)判斷射線EFBD的位置關(guān)系,并說明理由;

2)求∠C,∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和爸爸從家步行去公園,爸爸先出發(fā)一直勻速前行,小明后出發(fā)勻速前行,且途中休息一段時(shí)間后繼續(xù)以原速前行.家到公園的距離為2000m,如圖是小明和爸爸所走的路程Sm)與步行時(shí)間tmin)的函數(shù)圖象.

1)直接寫出BC段圖象所對應(yīng)的函數(shù)關(guān)系式(不用寫出t的取值范圍).

2)小明出發(fā)多少時(shí)間與爸爸第三次相遇?

3)在速度都不變的情況下,小明希望比爸爸早18分鐘到達(dá)公園,則小明在步行過程中停留的時(shí)間需減少   分鐘.

查看答案和解析>>

同步練習(xí)冊答案