【題目】如圖,菱形ABCD的邊長(zhǎng)為2,∠B=30°.動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿B﹣C﹣D的路線向點(diǎn)D運(yùn)動(dòng).設(shè)△ABP的面積為y(B、P兩點(diǎn)重合時(shí),△ABP的面積可以看做0),點(diǎn)P運(yùn)動(dòng)的路程為x,則y與x之間函數(shù)關(guān)系的圖象大致為( )

A.
B.
C.
D.

【答案】C
【解析】解:由題意知,點(diǎn)P從點(diǎn)B出發(fā),沿B→C→D向終點(diǎn)D勻速運(yùn)動(dòng),則當(dāng)0<x≤2,y= x,
當(dāng)2<x≤4,y=1,
由以上分析可知,這個(gè)分段函數(shù)的圖象是C.
故選C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的圖象的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的一條弦,且AB=4 . 點(diǎn)C,E分別在⊙O上,且OC⊥AB于點(diǎn)D,∠E=30°,連接OA.
(1)求OA的長(zhǎng);
(2)若AF是⊙O的另一條弦,且點(diǎn)O到AF的距離為2 , 直接寫(xiě)出∠BAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為2的正方形ABCD在第一象限內(nèi),ABx軸,點(diǎn)A的坐標(biāo)為(5,3),己知直線l:y= x﹣2

(1)將直線l向上平移m個(gè)單位,使平移后的直線恰好經(jīng)過(guò)點(diǎn)A,求m的值

(2)在(1)的條件下,平移后的直線與正方形的邊長(zhǎng)BC交于點(diǎn)E,求ABE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙P與y軸相切于點(diǎn)C,⊙P的半徑是4,直線y=x被⊙P截得的弦AB的長(zhǎng)為4 , 求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是4, 的平分線交DC于點(diǎn)E.若點(diǎn)P,Q分別是ADAE上的動(dòng)點(diǎn),則的最小值是(  )

A. 2 B. 4 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰梯形ABCD中,AD∥BC,過(guò)點(diǎn)D作DF⊥BC于F.若AD=2,BC=4,DF=2,則DC的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).已知反比例函數(shù)y=k0)的圖象經(jīng)過(guò)點(diǎn)A2,m),過(guò)點(diǎn)AAB⊥x軸于點(diǎn)B,且△AOB的面積為

1)求km的值;

2)點(diǎn)Cxy)在反比例函數(shù)y=的圖象上,求當(dāng)1≤x≤3時(shí)函數(shù)值y的取值范圍;

3)過(guò)原點(diǎn)O的直線l與反比例函數(shù)y=的圖象交于P、Q兩點(diǎn),試根據(jù)圖象直接寫(xiě)出線段PQ長(zhǎng)度的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中是真命題的是( )

A. 兩條對(duì)角線相等的四邊形是矩形;

B. 有一條對(duì)角線平分一個(gè)內(nèi)角的平行四邊形為菱形;

C. 對(duì)角線互相垂直且相等的四邊形是正方形;

D. 依次連結(jié)四邊形各邊的中點(diǎn),所得四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,四邊形ABCD四條邊上的中點(diǎn)分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點(diǎn)四邊形).

(1)四邊形EFGH的形狀是_____,證明你的結(jié)論;

(2)當(dāng)四邊形ABCD的對(duì)角線滿足_____條件時(shí),四邊形EFGH是矩形(不證明)

(3)你學(xué)過(guò)的哪種特殊四邊形的中點(diǎn)四邊形是矩形?_____(不證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案