【題目】在平面角坐標(biāo)系中,函數(shù)y=2x和y=-x的圖像分別為直線l1、l2,過點(1,0)作x軸的垂線交l2于點A1,過點A1作y軸的垂線交l2于點A2,過點A2作x軸的垂線交l1于點A3,過點A3作y軸的垂線交l2于點A4,…,依次進(jìn)行下去,則點A2020的坐標(biāo)為_______________
【答案】(21010,-21010)
【解析】
寫根據(jù)一次函數(shù)圖象上點的坐標(biāo)特征可得出點A1、A2、A3、A4、A5、A6、A7、A8等的坐標(biāo),根據(jù)坐標(biāo)的變化即可找出變化規(guī)律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n為自然數(shù))”,依此規(guī)律結(jié)合2020=504×4+4即可找出點A2020的坐標(biāo).
解:當(dāng)x=1時,y=2,
∴點A1的坐標(biāo)為(1,2);
當(dāng)y=-x=2時,x=-2,
∴點A2的坐標(biāo)為(-2,2);
同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,
∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),
A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n為自然數(shù)).
∵2020=504×4+4,
∴點A2020的坐標(biāo)為(2504×2+2,-2504×2+2),即(21010,-21010).
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有6個質(zhì)地和大小均相同的球,每個球只標(biāo)有一個數(shù)字,將標(biāo)有3,4,5的三個球放入甲箱中,標(biāo)有4,5,6的三個球放入乙箱中.
(1)小宇從甲箱中隨機(jī)模出一個球,求“摸出標(biāo)有數(shù)字是3的球”的概率;
(2)小宇從甲箱中、小靜從乙箱中各自隨機(jī)摸出一個球,若小宇所摸球上的數(shù)字比小靜所摸球上的數(shù)字大1,則稱小宇“略勝一籌”.請你用列表法(或畫樹狀圖)求小宇“略勝一籌”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線與y軸交于點,按如圖方式作正方形、、、…,點、、、…在直線上,點、、、…,在x軸上,圖中陰影部分三角形的面積從左到右依次記為、、、…,則_______,________.(用含n的代數(shù)式表示,n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與x軸和y軸分別交于點A和B,再將沿直線CD對折,使點A與點B重合,直線CD與x軸交于點C,與AB交于點D,連接BC.
(1)求點A和點B的坐標(biāo);
(2)求;
(3)在y軸上有一點P,且是等腰三角形,求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩地相距60km,甲從A地去B地,乙從B地去A地,圖中l1、l2分別表示甲、乙兩人離B地的距離y(km)與甲出發(fā)時間x(h)的函數(shù)關(guān)系圖象.
(1)根據(jù)圖象,直接寫出乙的行駛速度;
(2)解釋交點A的實際意義;
(3)甲出發(fā)多少時間,兩人之間的距離恰好相距5km;
(4)若用y3(km)表示甲乙兩人之間的距離,請在坐標(biāo)系中畫出y3(km)關(guān)于時間x(h)的函數(shù)關(guān)系圖象,注明關(guān)鍵點的數(shù)據(jù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC是等邊三角形,過點C作CD∥AB,且CD=AB,連接BD交AC于點O.
(1)如圖1,求證:AC垂直平分BD;
(2)如圖2,點M在BC的延長線上,點N在線段CO上,且ND=NM,連接BN.求證:NB=NM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y1=x+3經(jīng)過點A(m,5),與y軸的交點為B;直線l2:y2=kx+b經(jīng)過點A和C(2,﹣1).
(1)求直線l2的解析式,并直接寫出不等式y1≥y2的解集;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是二次函數(shù)圖象的一部分,圖象過點,二次函數(shù)圖象對稱軸為直線,給出五個結(jié)論:①;②;③;④方程的根為,;⑤當(dāng)時,隨著的增大而增大.其中正確結(jié)論是( )
A. ①②③ B. ①③④ C. ②③④ D. ①④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com