【題目】函數(shù) y=(a為常數(shù))的圖象上有三點(diǎn)(﹣4,y1),(﹣1,y2),(2,y3),則函數(shù)值y1 , y2 , y3的大小關(guān)系是( )
A.y3<y1<y2
B.y3<y2<y1
C.y1<y2<y3
D.y2<y3<y1
【答案】A
【解析】解:∵a2≥0,
∴﹣a2≤0,﹣a2﹣1<0,
∴反比例函數(shù)的圖象在二、四象限,
∵點(diǎn)(2,y3)的橫坐標(biāo)為2>0,∴此點(diǎn)在第四象限,y3<0;
∵(﹣4,y1),(﹣1,y2)的橫坐標(biāo)﹣4<﹣1<0,∴兩點(diǎn)均在第二象限y1>0,y2>0,
∵在第二象限內(nèi)y隨x的增大而增大,
∴y2>y1 ,
∴y2>y1>y3 .
故選A.
先判斷出函數(shù)反比例函數(shù)的圖象所在的象限,再根據(jù)圖象在每一象限的增減性及每一象限坐標(biāo)的特點(diǎn)進(jìn)行判斷即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】營(yíng)市公交公司將淘汰所有線路上“冒黑煙”較嚴(yán)重的公交車,計(jì)劃購(gòu)買A型和B型兩種環(huán)保節(jié)能公交車共10輛,若購(gòu)買A型公交車1輛,B型公交車2輛,共需400萬元;若購(gòu)買A型公交車2輛,B型公交車1輛,共需350萬元.
(1)求購(gòu)買A型和B型公交車每輛各需多少萬元?
(2)預(yù)計(jì)在該線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購(gòu)買A型和B型公交車的總費(fèi)用不超過1220萬元,且確保這10輛公交車在該線路的年均載客總和不少于650萬人次,則該公司有哪幾種購(gòu)車方案?哪種購(gòu)車方案總費(fèi)用最少?最少總費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在面積為12的平行四邊形ABCD中,過點(diǎn)A作直線BC的垂線交直線BC于點(diǎn)E,過點(diǎn)A作直線CD的垂線交直線CD于點(diǎn)F,若AB=4,BC=6,則CE+CF的值為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“佳佳商場(chǎng)”在銷售某種進(jìn)貨價(jià)為20元/件的商品時(shí),以30元/件售出,每天能售出100件.調(diào)查表明:這種商品的售價(jià)每上漲1元/件,其銷售量就將減少2件.
(1)為了實(shí)現(xiàn)每天1600元的銷售利潤(rùn),“佳佳商場(chǎng)”應(yīng)將這種商品的售價(jià)定為多少?
(2)物價(jià)局規(guī)定該商品的售價(jià)不能超過40元/件,“佳佳商場(chǎng)”為了獲得最大的利潤(rùn),應(yīng)將該商品售價(jià)定為多少?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為矩形ABCD對(duì)角線的交點(diǎn),DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形.
(2)若AB=6,BC=8,求四邊形OCED的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C分別是⊙O上的點(diǎn),∠B=60°,P是直徑CD的延長(zhǎng)線上的一點(diǎn),且AP=AC. 如果AC=3,則PD的長(zhǎng)為______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時(shí)出發(fā),勻速行駛,設(shè)行駛的時(shí)間為x(時(shí)),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達(dá)乙地過程中y與x之間的函數(shù)關(guān)系,已知兩車相遇時(shí)快車比慢車多行駛40千米,快車到達(dá)乙地時(shí),慢車還有( )千米到達(dá)甲地.
A. 70 B. 80 C. 90 D. 100
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列兩個(gè)等式:2﹣=2×+1,5﹣=5×+1,給出定義如下:我們稱使等式a﹣b=ab+1的成立的一對(duì)有理數(shù)a,b為“共生有理數(shù)對(duì)”,記為(a,b),如:數(shù)對(duì)(2,),(5,),都是“共生有理數(shù)對(duì)”.
(1)數(shù)對(duì)(﹣2,1),(3,)中是“共生有理數(shù)對(duì)”的是 ;
(2)若(m,n)是“共生有理數(shù)對(duì)”,則(﹣n,﹣m) “共生有理數(shù)對(duì)”(填“是”或“不是”);
(3)請(qǐng)?jiān)賹懗鲆粚?duì)符合條件的“共生有理數(shù)對(duì)”為 ;(注意:不能與題目中已有的“共生有理數(shù)對(duì)”重復(fù))
(4)若(a,3)是“共生有理數(shù)對(duì)”,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com