【題目】如圖,是的直徑,點是上一點,點是的中點,過點作的切線,與、的延長線分別交于點、,連接.
(1)求證:;
(2)直接回答:①已知,當(dāng)為何值時,?
②連接、、,當(dāng)等于多少度時,四邊形是菱形?
【答案】(1)證明見解析;(2)①;②.
【解析】
(1)連接OD,由點D是弧CB的中點,過點D作⊙O的切線,可得OD⊥EF,AF∥OD,進而得出AF⊥EF;
(2)①當(dāng)BE=4時,連接BC,證明△ACB∽△AFE,所以,即AC=CF;
②當(dāng)∠E=30°時,證明△ODB,△AOC,△COD為等邊三角形,所以OB=BD=OD=CD=OC,即四邊形OBDC是菱形.
如圖1,連接,
∵點是的中點,過點作的切線,
∴,,
∵,
∴,
∴,
∴,
∴.
(2)①當(dāng) 時,.
如圖2,連接BC,
,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∵AF⊥EF,
∴∠ACB=∠F=90°,
∴BC∥EF,
∴△ACB∽△AFE,
∴.
∴AC=CF.
②當(dāng)時, 四邊形是菱形.
如圖3,
∵EF是過點D的⊙O的切線,
∴∠ODE=∠F=90°,
∴∠DOE=∠CAO=60°,
∵OD=OB=OC=OA,
∴△ODB,△AOC為等邊三角形,
∴∠COA=∠DOB=60°,
∴∠COD=60°,
∴△COD為等邊三角形,
∴OB=BD=OD=CD=OC,
∴四邊形OBDC是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了做好開學(xué)準(zhǔn)備,某校共購買了20桶A、B兩種桶裝消毒液,進行校園消殺,以備開學(xué).已知A種消毒液300元/桶,每桶可供2 000米2的面積進行消殺,B種消毒液200元/桶,每桶可供1 000米2的面積進行消殺.
(1)設(shè)購買了A種消毒液x桶,購買消毒液的費用為y元,寫出y與x之間的關(guān)系式,并指出自變量x的取值范圍;
(2)在現(xiàn)有資金不超過5 300元的情況下,求可消殺的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,⊙O的半徑為r,在射線OM上任取一點P(不與點O重合),如果射線OM上的點P',滿足OP·OP'=r2,則稱點P'為點P關(guān)于⊙O的反演點.
在平面直角坐標(biāo)系xOy中,已知⊙O的半徑為2.
(1)已知點A (4,0),求點A關(guān)于⊙O的反演點A'的坐標(biāo);
(2)若點B關(guān)于⊙O的反演點B'恰好為直線與直線x=4的交點,求點B的坐標(biāo);
(3)若點C為直線上一動點,且點C關(guān)于⊙O的反演點C'在⊙O的內(nèi)部,求點C的橫坐標(biāo)m的范圍;
(4)若點D為直線x=4上一動點,直接寫出點D關(guān)于⊙O的反演點D'的橫坐標(biāo)t的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋里面有13個完全相同的小球,在每一個小球上書寫一個漢字,這些漢字組成一句話:“知之為知之,不知為不知,是知也”.隨機摸出一個小球然后放回,再隨機摸取一個小球,兩次取出的小球都是“知”的概率是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+bx+c與x軸負半軸交于點A,與x軸正半軸交于點B,與y軸交于點C.
(1)如圖1,若OB=2OA=2OC
①求拋物線的解析式;
②若M是第一象限拋物線上一點,若cos∠MAC=,求M點坐標(biāo).
(2)如圖2,直線EF∥x軸與拋物線相交于E、F兩點,P為EF下方拋物線上一點,且P(m,﹣2).若∠EPF=90°,則EF所在直線的縱坐標(biāo)是否為定值,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展平,再一次折疊紙片,使點A落在EF上的點A′處,并使折痕經(jīng)過點B,得到折痕BM,若矩形紙片的寬AB=4,則折痕BM的長為( )
A.B.C.8D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D是AC上一點,過B,C,D三點的⊙O交AB于點E,連接ED,EC,點F是線段AE上的一點,連接FD,其中∠FDE=∠DCE.
(1)求證:DF是⊙O的切線.
(2)若D是AC的中點,∠A=30°,BC=4,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,單位長度為1的網(wǎng)格坐標(biāo)系中,一次函數(shù) 與坐標(biāo)軸交于A、B兩點,反比例函數(shù)(x>0)經(jīng)過一次函數(shù)上一點C(2,a).
(1)求反比例函數(shù)解析式,并用平滑曲線描繪出反比例函數(shù)圖像;
(2)依據(jù)圖像直接寫出當(dāng)時不等式的解集;
(3)若反比例函數(shù)與一次函數(shù)交于C、D兩點,使用直尺與2B鉛筆構(gòu)造以C、D為頂點的矩形,且使得矩形的面積為10.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的曲邊三角形可按下述方法作出:作等邊三角形;分別以點,,為圓心,以的長為半徑作,,.三段弧所圍成的圖形就是一個曲邊三角形,如果一個曲邊三角形的周長為,那么這個曲邊三角形的面積是___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com