【題目】如圖,在ABC中,tanA=,B=45°,AB=14. BC的長.

【答案】BC=6

【解析】試題分析:

如圖過點CCDAB于點D,得到RtADCRtBCD,由在RtADCtanA=,設(shè)CD=3x,AD=4x,則在RtBCD中,由∠B=45°,可得BD=CD=3x,結(jié)合AB=14由勾股定理列出方程解得x的值,再在RtBCD中,由勾股定理即可求得BC的值.

試題解析:

如圖過點CCD⊥AB于點D,

∴∠ADC=∠BDC=90°,

tanA=

,

設(shè)CD=3x,AD=4x,

∵∠B=45°,∠BDC=90°

∴BD=CD=3x,

∵AD+BD=AB=14,

∴4x+3x=14,解得x=2,

∴BD=CD=6,

BC=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓內(nèi)接六邊形ABCDEF中AB=CD=EF,且三條對角線AD、BE、CF交于點P,CE與AD交于點Q,已知AC=26,CE=39,那么CQQE=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將半徑為6,圓心角為120°的扇形OAB繞點B順時針旋轉(zhuǎn)60°,點O,A的對應(yīng)點分別為O′,A′,連接AA′,在圖中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)國家的一帶一路經(jīng)濟發(fā)展戰(zhàn)略,樹立品牌意識,我市質(zhì)檢部門對A、B、C、D四個廠家生產(chǎn)的同種型號的零件共2000件進行合格率檢測,通過檢測得出C廠家的合格率為95%,并根據(jù)檢測數(shù)據(jù)繪制了如圖1、圖2兩幅不完整的統(tǒng)計圖.

1)抽查D廠家的零件為 件,扇形統(tǒng)計圖中D廠家對應(yīng)的圓心角為

2)抽查C廠家的合格零件為 件,并將圖1補充完整;

3)通過計算說明合格率排在前兩名的是哪兩個廠家.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,O過正方形ABCD的頂點A、D且與邊BC相切于點E,分別交AB、DC于點M、N.動點P在⊙O或正方形ABCD的邊上以每秒一個單位的速度做連續(xù)勻速運動.設(shè)運動的時間為x,圓心OP點的距離為y,圖2記錄了一段時間里yx的函數(shù)關(guān)系,在這段時間里P點的運動路徑為( )

A. D點出發(fā),沿弧DA→AM→線段BM→線段BC

B. B點出發(fā),沿線段BC→線段CN→ND→DA

C. A點出發(fā),沿弧AM→線段BM→線段BC→線段CN

D. C點出發(fā),沿線段CN→ND→DA→線段AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,BD是一條對角線,∠DBC=30°DBA=45°,C=70°.DC=aAB=b, 請寫出求tanADB的思路.不用寫出計算結(jié)果

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰ABC中,AB=AC,將線段BA繞點B順時針旋轉(zhuǎn)到BD,使BDACH,連結(jié)AD并延長交BC的延長線于點P.

(1)依題意補全圖形;

(2)若∠BAC=2α,求∠BDA的大。ㄓ煤α的式子表示);

(3)小明作了點D關(guān)于直線BC的對稱點點E,從而用等式表示線段DPBC之間的數(shù)量關(guān)系.請你用小明的思路補全圖形并證明線段DPBC之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠ADB,作圖.

步驟1:以點D為圓心,適當(dāng)長為半徑畫弧,分別交DA、DB于點MN;再分別以點M、N為圓心,大于MN長為半徑畫弧交于點E,畫射線DE

步驟2:在DB上任取一點O,以點O為圓心,OD長為半徑畫半圓,分別交DADB、DE于點P、QC;

步驟3:連結(jié)PQ、OC

則下列判斷:;②OC∥DA;③DP=PQ;④OC垂直平分PQ,其中正確的結(jié)論有( 。

A. ①③④ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線AC、BD相交于點O,在DC的延長線上取一點E,連接OE交BC于點F,已知AB=6,BC=8,CE=2

(1)求CF的長.

(2)設(shè)COF的面積為S1,△COD的面積為S2,直接寫出S1:S2的值.

查看答案和解析>>

同步練習(xí)冊答案