【題目】如圖,在菱形ABCD中,AC,BD相交于點(diǎn)O,E為AB的中點(diǎn),DE⊥AB.
(1)求∠ABC的度數(shù);
(2)如果 ,求DE的長.
【答案】
(1)解:∵E為AB的中點(diǎn),DE⊥AB,
∴AD=DB,
∵四邊形ABCD是菱形,
∴AB=AD,
∴AD=DB=AB,
∴△ABD為等邊三角形.
∴∠DAB=60°.
∵菱形ABCD的邊AD∥BC,
∴∠ABC=180°﹣∠DAB=180°﹣60°=120°,
即∠ABC=120°
(2)解:∵四邊形ABCD是菱形,
∴BD⊥AC于O,AO= AC= ×4 =2 ,
由(1)可知DE和AO都是等邊△ABD的高,
∴DE=AO=2
【解析】(1)根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AD=BD,再根據(jù)菱形的四條邊都相等可得AB=AD,然后求出AB=AD=BD,從而得到△ABD是等邊三角形,再根據(jù)等邊三角形的性質(zhì)求出△DAB=60°,然后根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)求解即可;(2)根據(jù)菱形的對(duì)角線互相平分求出AO,再根據(jù)等邊三角形的性質(zhì)可得DE=AO.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017·蘇州)有一組數(shù)據(jù):2,5,5,6,7,這組數(shù)據(jù)的平均數(shù)為( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,BD平分∠ABC,DE⊥AB于E,則:
(1)哪條線段與DE相等?為什么?
(2)若BC=8,AC=6,求BE,AE的長和△AED的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx+b,若k+b=﹣5,kb=6,那么該直線不經(jīng)過( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AD是△ABC的中線,BE是△ABD的中線,若△ABC的面積為20,則△ABE的面積為( )
A.5 B.10 C.15 D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,BC=2AB,對(duì)角線相交于O,過C點(diǎn)作CE⊥BD交BD于E點(diǎn),H為BC中點(diǎn),連接AH交BD于G點(diǎn),交EC的延長線于F點(diǎn),下列5個(gè)結(jié)論:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四邊形GHCE , ⑤CF=BD.正確的有( )個(gè).
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩公司為“見義勇為基金會(huì)”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人數(shù)比乙公司的人數(shù)多20%.
請(qǐng)你根據(jù)以上信息,提出一個(gè)用分式方程解決的問題,并寫出解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明向一些好友發(fā)送了一條新年問候的短信,獲得信息的人也按小明發(fā)送的人數(shù)再加1人向外轉(zhuǎn)發(fā),經(jīng)過兩輪短信的發(fā)送,共有35人次手機(jī)上收到該短信,則小明發(fā)送短信給了__________個(gè)好友
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com