【題目】閱讀對學(xué)生的成長有著深遠(yuǎn)的影響,某中學(xué)為了解學(xué)生每周課余閱讀的時(shí)間,在本校隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計(jì)圖表.
組別 | 時(shí)間(小時(shí)) | 頻數(shù)(人數(shù)) | 頻率 |
A | 0≤t≤0.5 | 6 | 0.15 |
B | 0.5≤t≤1 | a | 0.3 |
C | 1≤t≤1.5 | 10 | 0.25 |
D | 1.5≤t≤2 | 8 | b |
E | 2≤t≤2.5 | 4 | 0.1 |
合計(jì) | 1 |
請根據(jù)圖表中的信息,解答下列問題:
(1)表中的a= ,b= ,中位數(shù)落在 組,將頻數(shù)分布直方圖補(bǔ)全;
(2)估計(jì)該校2000名學(xué)生中,每周課余閱讀時(shí)間不足0.5小時(shí)的學(xué)生大約有多少名?
(3)E組的4人中,有1名男生和3名女生,該校計(jì)劃在E組學(xué)生中隨機(jī)選出兩人向全校同學(xué)作讀書心得報(bào)告,請用畫樹狀圖或列表法求抽取的兩名學(xué)生剛好是1名男生和1名女生的概率.
【答案】(1) 12,0.2,1≤t≤1.5;補(bǔ)圖見解析;(2) 300人;(3)
【解析】
試題分析:(1)先求得抽取的學(xué)生數(shù),再根據(jù)頻率計(jì)算頻數(shù),根據(jù)頻數(shù)計(jì)算頻率;
(2)根據(jù)每周課余閱讀時(shí)間不足0.5小時(shí)的學(xué)生的頻率,估計(jì)該校2000名學(xué)生中,每周課余閱讀時(shí)間不足0.5小時(shí)的學(xué)生數(shù)即可;
(3)通過畫樹狀圖,根據(jù)概率的計(jì)算公式,即可得到抽取的兩名學(xué)生剛好是1名男生和1名女生的概率.
試題解析:(1)∵抽取的學(xué)生數(shù)為6÷0.15=40人,
∴a=0.3×40=12人,b=8÷40=0.2,
頻數(shù)分布直方圖如下:
(2)該校2000名學(xué)生中,每周課余閱讀時(shí)間不足0.5小時(shí)的學(xué)生大約有:0.15×2000=300人;
(3)樹狀圖如圖所示:
總共有12種等可能的結(jié)果,其中剛好是1名男生和1名女生的結(jié)果有6種,
∴抽取的兩名學(xué)生剛好是1名男生和1名女生的概率= .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°。
①當(dāng)點(diǎn)D在AC上時(shí),如圖1,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?寫出你猜想的結(jié)論,并說明理由;
②將圖1中的△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α角(0°<α<90°),如圖2,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知△ABC.
(1)請用尺規(guī)作圖法作出BC的垂直平分線DE,垂足為D,交AC于點(diǎn)E, (保留作圖痕跡,不寫作法);
(2)請用尺規(guī)作圖法作出∠C的角平分線CF,交AB于點(diǎn)F,(保留作圖痕跡,不寫作法);
(3)請用尺規(guī)作圖法在BC上找出一點(diǎn)P,使△PEF的周長最小.(保留作圖痕跡,不寫作法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論
①a>0,②b>0,③c>0,④b2﹣4ac>0
其中正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)D(﹣2,﹣3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動(dòng)點(diǎn)P,求出PA+PD的最小值;
(3)若拋物線上有一動(dòng)點(diǎn)P,使三角形ABP的面積為6,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 AB 是⊙O 的直徑,點(diǎn) C、D 在⊙O 上,過 D 點(diǎn)作 PF∥AC交⊙O 于 F,交 AB 于點(diǎn) E,∠BPF=∠ADC
(1)求證:AEEB=DEEF.
(2)求證:BP 是⊙O 的切線:
(3)當(dāng)?shù)陌霃綖?/span>,AC=2,BE=1 時(shí),求 BP 的長,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從﹣2,﹣ , ,1,3五個(gè)數(shù)中任選1個(gè)數(shù),記為a,它的倒數(shù)記為b,將a,b代入不等式組 中,能使不等式組至少有兩個(gè)整數(shù)解的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,D為BC的中點(diǎn),DE⊥AB,垂足為E,過點(diǎn)B作BF∥AC交DE的延長線于點(diǎn)F,連接CF.
(1)求證:AD⊥CF;
(2)連接AF,試判斷△ACF的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com