分解因式:
(1)(x+1)(x+2)(x+3)(x+6)+x2;
(2)1999x2-(19992-1)x一1999;
(3)(x+y-2xy)(x+y-2)+(xy-1)2;
(4)(2x-3y)3+(3x-2y)3-125(x-y)3.
解:(1)(x+1)(x+2)(x+3)(x+6)+x2
=(x+1)(x+6)(x+2)(x+3)+x2
=(x2+7x+6)(x2+5x+6)+x2
=[(x2+5x+6)+2x](x2+5x+6)+x2
=(x2+5x+6)2+2x(x2+5x+6)+x2
=(x2+5x+6+x)2
=(x2+6x+6)2;
(2)1999x2-(19992-1)x一1999
=1999x2+(1+1999)(1-1999)x-1999
=(1999x+1)(x-1999);
(3)令x+y=a,xy=b,
則(x+y-2xy)(x+y-2)+(xy-1)2
=(a-2b)(a-2)+(b-1)2
=(a-b)2-2(a-b)+1
=(a-b-1)2;
即原式=(x+y-xy-1)2.
(4)(2x-3y)3+(3x-2y)3-125(x-y)3
=(2x-3y)3+(3x-2y)3-[5(x-y)]3
=(2x-3y)3+(3x-2y)3-[(2x-3y)+(3x-2y)]3
=-15(x-y)(2x-3y)(3x-2y).
分析:(1)是形如abcd+e型的多項(xiàng)式,分解這類多項(xiàng)式時(shí),可適當(dāng)把4個(gè)因式兩兩分組,使得分組相乘后所得的有相同的部分;
(2)式中系數(shù)較大,不妨把數(shù)用字母表示;
(3)式中x+y;xy多次出現(xiàn),可引入兩個(gè)新字母,突出式子特點(diǎn);
(4)式前兩項(xiàng)與后一項(xiàng)有密切聯(lián)系.
點(diǎn)評(píng):本題考查了多項(xiàng)式的因式分解,因式分解要根據(jù)所給多項(xiàng)式的特點(diǎn),選擇適當(dāng)?shù)姆椒,先考慮提取公因式,再對(duì)所給多項(xiàng)式進(jìn)行變形,套用公式,最后看結(jié)果是否符合要求.