【題目】如圖1,在平面直角坐標(biāo)系中,直線與直線交于點(diǎn),已知點(diǎn)的橫坐標(biāo)為-5,直線軸交于點(diǎn),與軸交于點(diǎn),直線軸交于點(diǎn).

1)求直線的解析式;

2)將直線向上平移6個(gè)單位得到直線,直線軸交于點(diǎn),過點(diǎn)軸的垂線,若點(diǎn)為垂線上的一個(gè)動(dòng)點(diǎn),點(diǎn)軸上的一個(gè)動(dòng)點(diǎn),當(dāng)的值最小時(shí),求此時(shí)點(diǎn)的坐標(biāo)及的最小值;

3)已知點(diǎn)、分別是直線、上的兩個(gè)動(dòng)點(diǎn),連接、、,是否存在點(diǎn)、,使得是以點(diǎn)為直角頂點(diǎn)的等腰直角三角形,若存在,求點(diǎn)的坐標(biāo),若不存在,說明理由.

【答案】1;(2;(3P(3,)

【解析】

1)點(diǎn)Ay=-x-8上,點(diǎn)A的橫坐標(biāo)為﹣5,得到A的坐標(biāo),將點(diǎn)A代入yx+b,即可求解;

2)點(diǎn)D是點(diǎn)C關(guān)于直線l4的對(duì)稱點(diǎn),作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A'(53),連接AD'x軸、l4于點(diǎn)N、M,則此時(shí)CM+MN+NA最小,最小值為A'D,即可求解;

3)證明△PNQ≌△EKP(AAS),則PN=KE,QN=PK,即可求解.

1)∵點(diǎn)Ay=-x-8上,點(diǎn)A的橫坐標(biāo)為﹣5,

A(5,﹣3)

將點(diǎn)A代入yx+b

b=4,

∴直線l1的解析式yx+4

2l2y=x8y軸的交點(diǎn)D(0,﹣8)

∵將直線l2向上平移6個(gè)單位得到直線l3,直線l3y軸交于點(diǎn)E

E(0,﹣2)

∵過點(diǎn)Ey軸的垂線l4

點(diǎn)D是點(diǎn)C關(guān)于直線l4的對(duì)稱點(diǎn),作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A'(5,3),

連接AD'x軸、l4于點(diǎn)N、M,則此時(shí)CM+MN+NA最小,最小值為:A'D

CM+MN+NA=MD+MN+A'N=A'D,

A'D;∴CM+MN+NA的值最小為;

3)存在,理由:

設(shè)點(diǎn)P、Q的坐標(biāo)分別為:(m,m+4)(n,﹣n8)

過點(diǎn)Qx軸的平行線交y軸于點(diǎn)M,過點(diǎn)PPNQM于點(diǎn)NPNl4于點(diǎn)K,

易證△PNQ≌△EKP(AAS),

PN=KE,QN=PK,

即:m+4+n+8=mmnm+4+2,

解得:m=3,n=

當(dāng)m=3時(shí),m+4=

故點(diǎn)P(3,)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(jià)(元)符合一次函數(shù),且時(shí),時(shí),

1)求一次函數(shù)的表達(dá)式;

2)若該商場(chǎng)獲得利潤為元,試寫出利潤與銷售單價(jià)之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤,最大利潤是多少元?

3)若該商場(chǎng)獲得利潤不低于500元,試確定銷售單價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1:在四邊形ABCD中,ABAD,BAD120°,BADC90°EF分別是BC、CD上的點(diǎn).且∠EAF60°.探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.

小王同學(xué)探究此問題的方法是,延長FD到點(diǎn)G,使DGBE.連結(jié)AG先證明ABE≌△ADG,再證明AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是   

探索延伸:

如圖2,若在四邊形ABCD中,ABADBD180°E、F分別是BC、CD上的點(diǎn),且∠EAFBAD,上述結(jié)論是否仍然成立,并說明理由;

實(shí)際應(yīng)用:

如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°A處,艦艇乙在指揮中心南偏東70°B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn)1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)EF處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)在11月中旬對(duì)甲、乙、丙三種型號(hào)的電視機(jī)進(jìn)行促銷.其中,甲型號(hào)電視機(jī)直接按成本價(jià)1280元的基礎(chǔ)上獲利定價(jià);乙型號(hào)電視機(jī)在原銷售價(jià)2199元的基礎(chǔ)上先讓利199元,再按八五折優(yōu)惠;丙型號(hào)電視機(jī)直接在原銷售價(jià)2399元上減499元;活動(dòng)結(jié)束后,三種型號(hào)電視機(jī)總銷售額為20600元,若在此次促銷活動(dòng)中,甲、乙、丙三種型號(hào)的電視機(jī)至少賣出其中兩種型號(hào),則三種型號(hào)的電視機(jī)共______有種銷售方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水晶廠生產(chǎn)的水晶工藝品非常暢銷,某網(wǎng)店專門銷售這種工藝品.成本為30元/件,每天銷售y(件)與銷售單價(jià)x(元)之間存在一次函數(shù)關(guān)系,當(dāng)x=40時(shí),y=300;當(dāng)x=55時(shí),y=150.

(1)求y與x之間的函數(shù)關(guān)系式;

(2)如果規(guī)定每天工藝品的銷售量不低于240件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤最大,最大利潤是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該工藝品銷售單價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)A、B在反比例函數(shù)y=(k>0,x>0)的圖象上,橫坐標(biāo)分別為1,4,對(duì)角線BDx軸.若菱形ABCD的面積為,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A10.0)及在第一象限的動(dòng)點(diǎn)Px,y),且x+y12,設(shè)△OPA的面積為S。

1)求S關(guān)于x的函數(shù)解析式;

2)求x的取值范圍;

3)當(dāng)S15時(shí),求P點(diǎn)坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“慈善一日捐”活動(dòng)中,為了解某校學(xué)生的捐款情況,抽樣調(diào)查了該校部分學(xué)生的捐款數(shù)(單位:元),并繪制成下面的統(tǒng)計(jì)圖.

1)本次調(diào)查的樣本容量是________,這組數(shù)據(jù)的眾數(shù)為________元;

2)求這組數(shù)據(jù)的平均數(shù);

3)該校共有學(xué)生參與捐款,請(qǐng)你估計(jì)該校學(xué)生的捐款總數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】俄羅斯世界杯足球賽期間,某商店銷售一批足球紀(jì)念冊(cè),每本進(jìn)價(jià)40元,規(guī)定銷售單價(jià)不低于44元,且獲利不高于30%.試銷售期間發(fā)現(xiàn),當(dāng)銷售單價(jià)定為44元時(shí),每天可售出300本,銷售單價(jià)每上漲1元,每天銷售量減少10本,現(xiàn)商店決定提價(jià)銷售.設(shè)每天銷售量為y本,銷售單價(jià)為x元.

(1)請(qǐng)直接寫出yx之間的函數(shù)關(guān)系式和自變量x的取值范圍;

(2)將足球紀(jì)念冊(cè)銷售單價(jià)定為多少元時(shí),商店每天銷售紀(jì)念冊(cè)獲得的利潤w元最大?最大利潤是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案