有兩個全等的等腰直角三角板ABC和EFG其直角邊長均為6(如圖1所示)疊放在一起,使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現(xiàn)將三角板EFG繞O點順時針旋轉(zhuǎn),旋轉(zhuǎn)角滿足0<º<90º,四邊形CHGK是旋轉(zhuǎn)過程中兩塊三角板的重疊部分(如圖2).

(1)在上述旋轉(zhuǎn)過程中,①BH與CK有怎樣的數(shù)量關(guān)系?②四邊形CHGK的面積是否發(fā)生變化?并證明你發(fā)現(xiàn)的結(jié)論.

(2)如圖,連接KH,在上述旋轉(zhuǎn)過程中,是否存在某一位置使△GKH的面積恰好等于△ABC面積的?若存在,請求出此時KC的長度;若不存在,請說明理由.


(1) ①BH=CK,②不變;(2)x=2或x=4

【解析】

試題分析:(1)先由ASA證出△CGK≌△BGH,再根據(jù)全等三角形的性質(zhì)得出BH=CK,根據(jù)全等得出四邊形CKGH的面積等于三角形ACB面積一半;

(2)根據(jù)面積公式得出,根據(jù)△GKH的面積恰好等于△ABC面積的,代入得出方程即可求得結(jié)果.

(1)BH與CK的數(shù)量關(guān)系:BH=CK,理由是:

連接OC,由直角三角形斜邊上中線性質(zhì)得出OC=BG,

四邊形CHGK的面積的變化情況:四邊形CHGK的面積不變,始終等于四邊形CQGZ的面積,即等于△ACB面積的一半,等于9;

(2)假設(shè)存在使△GKH的面積恰好等于△ABC面積的的位置.

設(shè)BH=x,由題意及(1)中結(jié)論可得,CK=BH=x,CH=CB-BH=6-x,

,


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


已知,則反比例函數(shù)且反比例函數(shù)的圖象在每個象限內(nèi)y隨x的增大而增大,那么反比例函數(shù)的關(guān)系式為【    】

A.         B.           C.           D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,以矩形ABCD的對角線AC的中點O為圓心、OA長為半徑作⊙O,⊙O經(jīng)過B、D兩點,過點B作BK⊥AC,垂足為K,過點D作DH∥KB,DH分別與AC、AB、⊙O及CB的延長線相交于點E、F、G、H。

(1)求證:AE=CK

(2)若AB=a,AD=a(a為常數(shù)),求BK的長(用含a的代數(shù)式表示)。

(3)若F是EG的中點,且DE=6,求⊙O的半徑和GH的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 把直線沿y軸方向平移m個單位后,與直線的交點在第二象限,則m的取值范圍是【    】

A.      B.       C.       D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 如圖,平面直角坐標(biāo)系中,⊙O半徑長為1.點⊙P(a,0),⊙P的半徑長為2,把⊙P向左平移,當(dāng)⊙P與⊙O相交時,a值的取值范圍為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知拋物線C:過原點,與軸的另一個交點為B(4,0),A為拋物線C的頂點,直線OA的解析式為,將拋物線C繞原點O旋轉(zhuǎn)180°得到拋物線C1,求拋物線C、C1的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在半徑為2的扇形AOB中,∠AOB=60°,點C是弧AB上的一個動點(不與點A、B重合)OD⊥BC,OE⊥AC,垂足分別為D、E.

(1)當(dāng)BC=1時,求線段OD的長;

(2)在△DOE中是否存在長度保持不變的邊?如果存在,請指出并求其長度,如果不存在,請說明理由;

(3)設(shè)BD=x,△DOE的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在矩形ABCD中,AB=3,BC=4.動點P從點A出發(fā)沿AC向終點C運動,同時動點Q從點B出發(fā)沿BA向點A運動,到達(dá)A點后立刻以原來的速度沿AB返回.點P、Q運動速度均為每秒1個單位長度,當(dāng)點P到達(dá)點C時停止運動,點Q也同時停止.連接PQ,設(shè)運動時間為tt >0)秒.

(1)求線段AC的長度;

(2)當(dāng)點Q從點B向點A運動時(未到達(dá)A點),求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;

(3)伴隨著P、Q兩點的運動,線段PQ的垂直平分線為l

①當(dāng)l經(jīng)過點A時,射線QPAD于點E,求AE的長;

②當(dāng)l經(jīng)過點B時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖所示,直線l:y=3x+3與x軸交于點A,與y軸交于點B.把△AOB沿y軸翻折,點A落到點C,拋物線過點B、C和D(3,0).

(1)求直線BD和拋物線的解析式.

(2)若BD與拋物線的對稱軸交于點M,點N在坐標(biāo)軸上,以點N、B、D為頂點的三角形與△MCD相似,求所有滿足條件的點N的坐標(biāo).

(3)在拋物線上是否存在點P,使SPBD=6?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案