【題目】如圖,在正方形ABCD中,E是BC邊上的一點(diǎn),BE=4,EC=8,將正方形邊AB沿AE折疊到AF,延長(zhǎng)EF交DC于G,連接AG,現(xiàn)在有如下四個(gè)結(jié)論:①∠EAG=45°;②FG=FC;③FC∥AG;④S△GFC=14.其中結(jié)論正確的序號(hào)是_____.
【答案】①③.
【解析】
證明∠GAF=∠GAD,∠EAB=∠EAF即可判斷①.證明DG=GC=FG,顯然△GFC不是等邊三角形,可得判斷②.證明CF⊥DF,AG⊥DF即可判斷③.證明FG:EG=3:5,求出△ECG的面積即可判斷④.
如圖,連接DF.
∵四邊形ABCD是正方形,
∴AB=AD=BC=CD,∠ABE=∠BAD=∠ADG=∠ECG=90°,
由翻折可知:AB=AF,∠ABE=∠AFE=∠AFG=90°,BE=EF=4,∠BAE=∠EAF,
∵∠AFG=∠ADG=90°,AG=AG,AD=AF,
∴Rt△AGD≌Rt△AGF(HL),
∴DG=FG,∠GAF=∠GAD,設(shè)GD=GF=x,
∴∠EAG=∠EAF+∠GAF=(∠BAF+∠DAF)=45°,故①正確,
在Rt△ECG中,∵EG2=EC2+CG2,
∴(4+x)2=82+(12﹣x)2,
∴x=6,
∵CD=BC=BE+EC=12,
∴DG=CG=6,
∴FG=GC,
易知△GFC不是等邊三角形,顯然FG≠FC,故②錯(cuò)誤,
∵GF=GD=GC,
∴∠DFC=90°,
∴CF⊥DF,
∵AD=AF,GD=GF,
∴AG⊥DF,
∴CF∥AG,故③正確,
∵S△ECG=×6×8=24,FG:FE=6:4=3:2,
∴FG:EG=3:5,
∴S△GFC=×24=,故④錯(cuò)誤,
故答案為:①③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1=ax+b(a≠0)的圖象與反比例函數(shù)y2=(k≠0)的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,過(guò)點(diǎn)A作AH⊥x軸于點(diǎn)H,點(diǎn)O是線段CH的中點(diǎn),AC=4,cos∠ACH=.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)在x軸上是否存在點(diǎn)P,使三角形PAC是等腰三角形?若存在,請(qǐng)求出P點(diǎn)坐標(biāo);不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一元二次方程2x2﹣3x﹣6=0有兩個(gè)實(shí)數(shù)根a,b,直線經(jīng)過(guò)點(diǎn)A(a+b,0)和點(diǎn)B(0,ab),則直線l的函數(shù)表達(dá)式為( )
A.y=2x﹣3B.y=2x+3C.y=﹣2x+3D.y=﹣2x﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是某品牌訂書(shū)機(jī),其截面示意圖如圖2所示.訂書(shū)釘放置在軌槽CD內(nèi)的MD處,由連接彈簧的推動(dòng)器MN推緊,連桿EP一端固定在壓柄CF上的點(diǎn)E處,另一端P在DM上移動(dòng).當(dāng)點(diǎn)P與點(diǎn)M重合后,拉動(dòng)壓柄CF會(huì)帶動(dòng)推動(dòng)器MN向點(diǎn)C移動(dòng).使用時(shí),壓柄CF的端點(diǎn)F與出釘口D重合,紙張放置在底座AB的合適位置下壓完成裝訂(即點(diǎn)D與點(diǎn)H重合).已知CA⊥AB,CA=2cm,AH=12cm,CE=5cm,EP=6cm,MN=2cm.
(1)求軌槽CD的長(zhǎng)(結(jié)果精確到0.1);
(2)裝入訂書(shū)釘需打開(kāi)壓柄FC,拉動(dòng)推動(dòng)器MN向點(diǎn)C移動(dòng),當(dāng)∠FCD=53°時(shí),能否在ND處裝入一段長(zhǎng)為2.5cm的訂書(shū)釘?(參考數(shù)據(jù):≈2.24,≈6.08,sin53°≈0.80,cos53°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線過(guò)點(diǎn).
(1)求出拋物線解析式的一般式;
(2)拋物線上的動(dòng)點(diǎn)在一次函數(shù)的圖象下方,求面積的最大值,并求出此時(shí)點(diǎn)的坐標(biāo);
(3)若點(diǎn)為軸上任意一點(diǎn),在(2)的結(jié)論下,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AO⊥BC于點(diǎn)O,OE⊥AB于點(diǎn)E,以點(diǎn)O為圓心,OE為半徑作半圓,交AO于點(diǎn)F.
(1)求證:AC是⊙O的切線;
(2)若點(diǎn)F是OA的中點(diǎn),OE=3,求圖中陰影部分的面積;
(3)在(2)的條件下,點(diǎn)P是BC邊上的動(dòng)點(diǎn),當(dāng)PE+PF取最小值時(shí),直接寫出BP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不等實(shí)根.
(1)求實(shí)數(shù)k的取值范圍.
(2)若方程兩實(shí)根滿足|x1|+|x2|=x1·x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,內(nèi)接于,點(diǎn),分別是,的中點(diǎn),,,則的度數(shù)是_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com