【題目】如圖:△ABC的周長(zhǎng)為30cm,把△ABC的邊AC對(duì)折,使頂點(diǎn)C和點(diǎn)A重合,折痕交BC邊于點(diǎn)D,交AC邊與點(diǎn)E,連接AD,若AE=4cm,求△ABD的周長(zhǎng).
【答案】解:由圖形和題意可知:AD=DC,AE=CE=4cm,
則AB+BC=30﹣8=22(cm),
故△ABD的周長(zhǎng)=AB+AD+BD=AB+CD+BC﹣CD=AB+BC=22cm,
答:△ABD的周長(zhǎng)為22cm.
【解析】由折疊的軸對(duì)稱性可知AD=DC,AE=CE=4cm,△ABD的周長(zhǎng)可等量代換為AB+AD+BD=AB+CD+BC﹣CD=AB+BC=22.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解翻折變換(折疊問題)(折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把(sinα)2記作sin2α,根據(jù)圖1和圖2完成下列各題.
(1)sin2A1+cos2A1= , sin2A2+cos2A2= , sin2A3+cos2A3=;
(2)觀察上述等式猜想:在Rt△ABC中,∠C=90°,總有sin2A+cos2A=;
(3)如圖2,在Rt△ABC中證明(2)題中的猜想:
(4)已知在△ABC中,∠A+∠B=90°,且sinA= ,求cosA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖a是長(zhǎng)方形紙帶(提示:AD∥BC),將紙帶沿EF折疊成圖b,再沿GF折疊成圖c.
(1)若∠DEF=20°,則圖b中∠EGB=______,∠CFG=______;
(2)若∠DEF=20°,則圖c中∠EFC=______;
(3)若∠DEF=α,把圖c中∠EFC用α表示為______;
(4)若繼續(xù)按EF折疊成圖d,按此操作,最后一次折疊后恰好完全蓋住∠EFG,整個(gè)過程共折疊了9次,問圖a中∠DEF的度數(shù)是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過A點(diǎn)的一次函數(shù)的圖象與正比例函數(shù)y=2x的圖象相交于點(diǎn)B.
(1)求一次函數(shù)的解析式;
(2)判斷點(diǎn)C(4,-2)是否在該一次函數(shù)的圖象上,說明理由;
(3)若該一次函數(shù)的圖象與x軸交于D點(diǎn),求△BOD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,屬于假命題的是( )
A.有一個(gè)銳角相等的兩個(gè)直角三角形一定相似
B.對(duì)角線相等的菱形是正方形
C.拋物線Y=X2—20x+17的開口向上
D.在一次拋擲圖釘?shù)脑囼?yàn)中,若釘尖朝上的頻率為3/5,則釘尖朝上的概率也為3/5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( ).
A.BD=DC, AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點(diǎn)間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,AE平分,,交AC延長(zhǎng)線于F,且垂足為E,則下列結(jié)論:;;,;其中正確的結(jié)論有______填寫序號(hào)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD中,AB=2,∠A=120°,點(diǎn)P、Q、K分別為線段BC,CD,BD上的任意一點(diǎn),則PK+QK的最小值為( 。
A. 1 B. 3 C. D. +1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com