【題目】如圖,相距5kmA、B兩地間有一條筆直的馬路,C地位于AB兩地之間且距A2km,小明同學騎自行車從A地出發(fā)沿馬路以每小時5km的速度向B地勻速運動,當?shù)竭_B地后立即以原來的速度返回。到達A地停止運動,設(shè)運動時間為t(小時).小明的位置為點P、若以點C為坐標原點,以從AB為正方向,用1個單位長度表示1km,解答下列各問:

(1)指出點A所表示的有理數(shù);

(2)t =0.5時,點P表示的有理數(shù);

(3)當小明距離C1km時,直接寫出所有滿足條件的t值;

(4)在整個運動過程中,求點P與點A的距離(用含t的代數(shù)式表示);

(5)用含t的代數(shù)式表示點P表示的有理數(shù).

【答案】(1)A所表示的有理數(shù)是2;

(2) t=0.5時點P表示的有理數(shù)是0.5.

(3)當小明距離C1km時,t的值是0.20.61.41.8;

(4)在整個運動過程中,求點P與點A的距離是5t千米或105t千米;

(5)點P表示的有理數(shù)是5t285t.

【解析】

試題(1)根據(jù)以點C為坐標原點,以從AB為正方向,而且AC=2km,可得點A所表示的有理數(shù)是-2.

(2)首先根據(jù)速度×時間=路程,用小明騎自行車的速度乘以0.5,求出小明0.5小時騎的路程是多少;然后用它減去2,求出t=0.5時點P表示的有理數(shù)是多少即可.

(3)根據(jù)題意,分兩種情況:①當小明在C點的左邊時;②當小明在C點的右邊時;然后根據(jù)路程÷速度=時間,求出小明距離C1km時,所有滿足條件的t值是多少即可.

(4)根據(jù)題意,分兩種情況:①小明從A地到B地時;②小明從B地到A地時;然后分類討論,求出點P與點A的距離是多少即可.

(5)根據(jù)題意,用點P與點A的距離減去2,用含t的代數(shù)式表示點P表示的有理數(shù)即可.

試題解析: (1)因為AC=2km,且1個單位長度表示1km,

所以點A所表示的有理數(shù)是2.

(2)5×0.52=2.52=0.5

所以t=0.5時點P表示的有理數(shù)是0.5.

(3)①當小明去時在C點的左邊時,

(21)÷5=1÷5=0.2

②當小明去時在C點的右邊時,

(2+1)÷5=3÷5=0.6

③當小明返回在C點的右邊時,

(103)÷5=7÷5=1.4

④當小明返回在C點的左邊時,

(101)÷5=9÷5=1.8

答:當小明距離C1km時,t的值是0.20.61.41.8

(4)①小明從A地到B地時,

P與點A的距離是5t千米。

(51)÷2=4÷2=2

所以小明從B地到A地時,

P與點A的距離是:

55(t1)=105t(千米)

所以在整個運動過程中,求點P與點A的距離是5t千米或105t千米。

(5)因為點P與點A的距離是5t千米或105t千米,

所以點P表示的有理數(shù)是5t285t.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,射線OA∥射線CB,∠C=∠OAB=100°.點DE在線段CB上,且∠DOB=∠BOA,OE平分∠DOC

1)試說明AB∥OC的理由;

2)試求∠BOE的度數(shù);

3)平移線段AB;

試問∠OBC∠ODC的值是否會發(fā)生變化?若不會,請求出這個比值;若會,請找出相應(yīng)變化規(guī)律.

若在平移過程中存在某種情況使得∠OEC=∠OBA,試求此時∠OEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次實驗中,小強把一根彈簧的上端固定,在其下端懸掛物體.下面是他測得的彈簧的長度y與所掛物體的質(zhì)量石的一組對應(yīng)值:

所掛物體的質(zhì)量x/kg

0

1

2

3

4

5

彈簧的長度y/cm

20

22

24

26

25

30

(1)上表反映了哪兩個變量之間的關(guān)系?哪個是自變量?哪個是因變量?

(2)填空:

①當所掛的物體為3kg時,彈簧長是____.不掛重物時,彈簧長是____.

②當所掛物體的質(zhì)量為8kg(在彈簧的彈性限度范圍內(nèi))時,彈簧長度是___.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形紙片ABCD的邊長為4cm,點M、N分別在邊AB、CD上.將該紙片沿MN折疊,使點D落在邊BC上,落點為E,MNDE相交于點Q.隨著點M的移動,點Q移動路線長度的最大值是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點,E,F分別是線段BMCM的中點.

(1)求證:ABM≌△DCM;

(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;

(3)當ADAB=__________時,四邊形MENF是正方形(只寫結(jié)論,不需證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=45°,∠B=60°,AB=4,P是BC邊上的動點(不與B,C重合),點P關(guān)于直線AB,AC的對稱點分別為M,N,則線段MN長的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在一條筆直的公路上有M、P、N三個地點,M、P兩地相距20km,甲開汽車,乙騎自行車分別從M、P兩地同時出發(fā),勻速前往N地,到達N地后停止運動.已知乙騎自行車的速度為20km/h,甲,乙兩人之間的距離y(km)與乙行駛的時間t(h)之間的關(guān)系如圖②所示.
(1)M、N兩地之間的距離為km;
(2)求線段BC所表示的y與t之間的函數(shù)表達式;
(3)若乙到達N地后,甲,乙立即以各自原速度返回M地,請在圖②所給的直角坐標系中補全函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文明,源遠流長;中華詩詞,寓意深廣.為了傳承優(yōu)秀傳統(tǒng)文化,我市某校團委組織了一次全校2000名學生參加的中國詩詞大會海選比賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分,為了更好地了解本次海選比賽的成績分布情況,隨機抽取了其中200名學生的海選比賽成績(成績x取整數(shù),總分100分)作為樣本進行整理,得到下列統(tǒng)計圖表:

請根據(jù)所給信息,解答下列問題:

(1)請把圖1中的條形統(tǒng)計圖補充完整;

(2)在圖2的扇形統(tǒng)計圖中,記表示B組人數(shù)所占的百分比為a%,則a的值為   ,表示C組扇形的圓心角θ的度數(shù)為   度;

(3)規(guī)定海選成績在90分以上(包括90分)記為優(yōu)等,請估計該校參加這次海選比賽的2000名學生中成績優(yōu)等的有多少人?

查看答案和解析>>

同步練習冊答案