如圖,直線(xiàn)AB:y=-x-b分別與x,y軸交于A(6,0)、B兩點(diǎn),過(guò)點(diǎn)B的直線(xiàn)交x軸負(fù)半軸于C,且OB:OC=3:1.
(1)求點(diǎn)B的坐標(biāo);
(2)求直線(xiàn)BC的解析式;
(3)直線(xiàn)EF:y=2x-k(k≠0)交AB于E,交BC于點(diǎn)F,交x軸于點(diǎn)D,是否存在這樣的直線(xiàn)EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
考點(diǎn):一次函數(shù)綜合題
專(zhuān)題:綜合題
分析:(1)將點(diǎn)A(6,0)代入直線(xiàn)AB的解析式,可得b的值,繼而可得點(diǎn)B的坐標(biāo);
(2)設(shè)BC的解析式是y=ax+c,根據(jù)B點(diǎn)的坐標(biāo),求出C點(diǎn)坐標(biāo),把B,C點(diǎn)的坐標(biāo)分別代入求出a和c的值即可;
(3)過(guò)E、F分別作EM⊥x軸,F(xiàn)N⊥x軸,則∠EMD=∠FND=90°,有題目的條件證明△NFD≌△EDM,進(jìn)而得到FN=ME,聯(lián)立直線(xiàn)AB:y=-x-b和y=2x-k求出交點(diǎn)E和F的縱坐標(biāo),再利用等底等高的三角形面積相等即可求出k的值;
解答:解:(1)將點(diǎn)A(6,0)代入直線(xiàn)AB解析式可得:0=-6-b,
解得:b=-6,
∴直線(xiàn)AB 解析式為y=-x+6,
∴B點(diǎn)坐標(biāo)為:(0,6).


(2)∵OB:OC=3:1,
∴OC=2,
∴點(diǎn)C的坐標(biāo)為(-2,0),
設(shè)BC的解析式是y=ax+c,代入得;
-2a+c=0
c=6
,
解得:
a=3
c=6

∴直線(xiàn)BC的解析式是:y=3x+6.

(3)過(guò)E、F分別作EM⊥x軸,F(xiàn)N⊥x軸,則∠EMD=∠FND=90°.
∵S△EBD=S△FBD,
∴DE=DF.
又∵∠NDF=∠EDM,
∴△NFD≌△EDM,
∴FN=ME,
聯(lián)立得
y=2x-k
y=-x+6

解得:yE=-
1
3
k+4,
聯(lián)立
y=2x-k
y=3x+6
,
解得:yF=-3k-12,
∵FN=-yF,ME=yE,
∴3k+12=-
1
3
k+4,
∴k=-2.4;
當(dāng)k=-2.4時(shí),存在直線(xiàn)EF:y=2x-2.4,使得S△EBD=S△FBD
點(diǎn)評(píng):本題考查了一次函數(shù)的綜合,涉及了待定系數(shù)法求函數(shù)解析式、兩直線(xiàn)的交點(diǎn)及三角形的面積,綜合考察的知識(shí)點(diǎn)較多,注意基本知識(shí)的掌握,將所學(xué)知識(shí)融會(huì)貫通,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知有10包相同數(shù)量的餅干,若將其中1包平分給23名學(xué)生,最后剩三片,若將此10包平分給23名學(xué)生,則最后剩的片數(shù)是多少?(用二元一次方程解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

求直線(xiàn)y=3x-6與兩條坐標(biāo)軸的交點(diǎn)的坐標(biāo),并求該直線(xiàn)與兩條坐標(biāo)軸所圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)
m2-n2
2m-n
+
2mn
n-2m
+
m2-4mn
n-2m

(2)
a
a+1
+
a-1
a2-1

(3)
2x
x2-4
-
1
x-2

(4)
1
a-1
-
a
a-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AC⊥BC,AC=BC,D為AB上一點(diǎn),BE⊥CD于E,AF⊥DC交CD延長(zhǎng)線(xiàn)于點(diǎn)F,BE=28,AF=12,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

學(xué)校開(kāi)展學(xué)生會(huì)主席競(jìng)選活動(dòng),到最后一輪還有小明、小亮和小麗三名選手,需進(jìn)行演講答辯與民主測(cè)評(píng).(1)演講答辯環(huán)節(jié),每位選手都從兩個(gè)分別標(biāo)有“A”、“B”內(nèi)容的簽中,隨機(jī)抽取一個(gè)作為自己的演講內(nèi)容,請(qǐng)你求出小明、小亮和小麗這三個(gè)選手中有兩個(gè)抽中內(nèi)容“A”,一個(gè)抽中內(nèi)容“B”的概率.
(2)演講答辯由7位評(píng)委老師打分,民主測(cè)評(píng)由50名學(xué)生代表一人一票,按“優(yōu)秀、良好、一般”三選一投票.如圖是7位評(píng)委對(duì)小明“演講答辯”的評(píng)分統(tǒng)計(jì)圖及50位同學(xué)民主測(cè)評(píng)票數(shù)統(tǒng)計(jì)圖.

①求小明演講答辯所得分?jǐn)?shù)的眾數(shù),以及民主測(cè)評(píng)為“良好”票數(shù)的扇形圓心角度數(shù);
②求小明的綜合得分是多少?
③在競(jìng)選中,小亮的民主測(cè)評(píng)得分為82分,如果他的綜合得分不小于小明的綜合得分,他的演講答辯得分至少要多少分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

因式分解:x(x-1)(x+1)+y(y-1)(y+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列各式及其驗(yàn)證過(guò)程:
2
3
2
7
=
2+
2
7

驗(yàn)證:2
3
2
7
=
3
42
7
=
3
24-2+2
23-1
=
2(23-1)+2
23-1
=
32+
2
7

3
3
3
26
=
33+
3
26

驗(yàn)證:3
3
3
26
=
3
34
26
=
3
34-3+3
33-1
=
3
3(33-1)+3
33-1
=
33+
3
26

(1)按照上面兩個(gè)等式及其驗(yàn)證過(guò)程的基本思路,猜想4
3
4
63
的變形結(jié)果并驗(yàn)證;
(2)針對(duì)上述各式反映的規(guī)律,寫(xiě)出用n表示的等式,其中n為自然數(shù)(n≥2),并進(jìn)行驗(yàn)證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

為了測(cè)量一個(gè)圓形鐵環(huán)的半徑,某同學(xué)采用如下的方法:將鐵環(huán)放在水平桌面上,用一個(gè)銳角為30°的三角板和一把刻度尺,按如圖的方法得到相關(guān)數(shù)據(jù),若三角形、刻度尺均與圓相切(切點(diǎn)為B、P),且測(cè)得PA=5,則鐵環(huán)的半徑為
 
(保留根號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案