【題目】某賓館有50個房間供游客居住,當每個房間每天的定價為180元時,房間會全部住滿;當每個房間每天的定價每增加10元時,就會有一個房間空閑.如果游客居住房間,賓館需對每個房間每天支出20元的各種費用.
(1)若每個房間定價增加40元,則這個賓館這一天的利潤為多少元?
(2)若賓館某一天獲利10640元,則房價定為多少元?
(3)房價定為多少時,賓館的利潤最大?
【答案】
(1)解:若每個房間定價增加40元,則這個賓館這一天的利潤為(180+40﹣20)×(50﹣ )=9200元
(2)解:設每個房間的定價為a元,
根據題意,得:(a﹣20)(50﹣ )=10640,
解得:a=300或a=400,
答:若賓館某一天獲利10640元,則房價定為300元或400元
(3)解:設房價增加x元時,利潤為w,
則w=(180﹣20+x)(50﹣ )
=﹣ x2+34x+8000
=﹣ (x﹣170)2+10890
因而當x=170時,即房價是350元時,利潤最大
【解析】(1)根據利潤=房價的凈利潤×入住的房間數可得;(2)設每個房間的定價為a元,根據以上關系式列出方程求解可得;(3)根據(1)中相等關系列出函數解析式,根據函數的性質可得最值情況.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點,點C的坐標是(8,4),連接AC,BC.
(1)求過O,A,C三點的拋物線的解析式,并判斷△ABC的形狀;
(2)動點P從點O出發(fā),沿OB以每秒2個單位長度的速度向點B運動;同時,動點Q從點B出發(fā),沿BC以每秒1個單位長度的速度向點C運動.規(guī)定其中一個動點到達端點時,另一個動點也隨之停止運動.設運動時間為t秒,當t為何值時,PA=QA?
(3)在拋物線的對稱軸上,是否存在點M,使以A,B,M為頂點的三角形是等腰三角形?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的長;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,E,F分別是正方形ABCD的邊CD、AD上的點.且CE=DF,AE、BF相交于點O,下列結論:①AE=BF,②AE⊥BF,③AO=OE,④S△AOB=S四邊形DEOF中,錯誤的有 . (只填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是二次函數y=ax2+bx+c圖象的一部分,圖象過點A(﹣1,0),對稱軸為直線x=1,給出以下結論:
①abc<0;②b2﹣4ac>0;③9a+3b+c>0;④若B( ,y1)、C(2,y2)為函數圖象上的兩點,則y1>y2 ,
其中正確的結論是(填寫代表正確結論的序號) .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,小敏利用課余時間制作了一個臉盆架,圖2是它的截面圖,垂直放置的臉盆與架子的交點為A,B,AB=40cm,臉盆的最低點C到AB的距離為10cm,則該臉盆的半徑為cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,某社會實踐活動小組實地測量兩岸互相平行的一段河的寬度,在河的南岸邊點A處,測得河的北岸邊點B在其北偏東45°方向,然后向西走60m到達C點,測得點B在點C的北偏東60°方向,如圖2.
(1)求∠CBA的度數.
(2)求出這段河的寬(結果精確到1m,備用數據 ≈1.41, ≈1.73).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線C:y=x2﹣2x+1的頂點為P,與y軸的交點為Q,點F(1, ).
(1)求點P,Q的坐標;
(2)將拋物線C向上平移得到拋物線C′,點Q平移后的對應點為Q′,且FQ′=OQ′.
①求拋物線C′的解析式;
②若點P關于直線Q′F的對稱點為K,射線FK與拋物線C′相交于點A,求點A的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com