已知:如圖,把長方形紙片ABCD沿EF折疊后.點D與點B重合,點C落在點C′的位置上.若∠1=60°,AE=1.

(1)求∠2、∠3的度數(shù);
(2)求長方形紙片ABCD的面積S.
(1);(2)

試題分析:(1)根據(jù)AD∥BC,∠1與∠2是內(nèi)錯角,因而就可以求得∠2,根據(jù)圖形的折疊的定義,可以得到∠4=∠2,進而就可以求的∠3的度數(shù);
(2)已知AE=1,在直角△ABE中,根據(jù)三角函數(shù)就可以求出AB、BE的長,BE=DE,則可以求出AD的長,就可以得到矩形的面積.
解:(1)如圖

由AD∥BC,
∴∠2=∠1=60°;
又∠4=∠2=60°,
∴∠3=180-60-60=60°;
(2)在直角△ABE中,由(1)知∠3=60°,
∴∠5=90-60=30°;
∴BE=2AE=2,

點評:折疊的性質(zhì)是初中數(shù)學(xué)的重點,貫穿于整個初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識點,一般難度不大,需熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,菱形ABCD的邊長為4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,則菱形的面積為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

探究:如圖①,在四邊形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于點E.若AE=10,求四邊形ABCD的面積.
應(yīng)用:如圖②,在四邊形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于點E.若AE=19,BC=10,CD=6,則四邊形ABCD的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,若AB=5cm,則BD=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平行四邊形ABCD中,AB=2,BC=3,∠ABC、∠BCD的平分線分別交AD于點E、F,則EF的長是( 。

A. 3   B. 2   C. 1.5 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,?ABCD中,∠ABC=60°,E、F分別在CD和BC的延長線上,AE∥BD,EF⊥BC,EF=,則AB的長是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,則梯形ABCD的周長為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,梯形ABCD中,AD∥BC,AD=4,AB=5,BC=10,CD的垂直平分線交BC于E,連接DE,則四邊形ABED的周長等于     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在等腰梯形ABCD中,AD∥BC,∠B=45°,若AD=4cm,AB=8cm,試求出此梯形的周長和面積.

查看答案和解析>>

同步練習(xí)冊答案