矩形ABCD中,對角線AC,BD相交于點(diǎn)O,∠AOB=60°,若AB=5cm,則BD=
.
試題分析:根據(jù)矩形性質(zhì)得出AO=BO,BD=2BO,得出等邊三角形AOB,推出AB=BO=5cm,即可得出答案.
解:∵四邊形ABCD是矩形,
∴AC=BD,AC=2AO,BD=2BO,
∴OA=OB,
∵∠AOB=60°,
∴△AOB是等邊三角形,
∴BO=OA=AB=5cm,
∴BD=2BO=10cm,
故答案為:10cm.
點(diǎn)評:本題考查了矩形的性質(zhì)和等邊三角形的性質(zhì)和判定的應(yīng)用,注意:矩形的對角線相等且互相平分.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:初中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在梯形ABCD中,AB∥CD,∠ABD=90°,AB=BD,在BC上截取BE,使BE=BA,過點(diǎn)B作BF⊥BC于B,交AD于點(diǎn)F.連接AE,交BD于點(diǎn)G,交BF于點(diǎn)H.
(1)已知AD=
,CD=2,求sin∠BCD的值;
(2)求證:BH+CD=BC.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知BE∥DF,∠ADF=∠CBE,AF=CE,求證:四邊形DEBF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四邊形ABCD為等腰梯形,AD∥BC,連結(jié)AC、BD.在平面內(nèi)將△DBC沿BC翻折得到△EBC.
(1)四邊形ABEC一定是什么四邊形?
(2)證明你在(1)中所得出的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,平行四邊形ABCD的對角線AC、BD相交于點(diǎn)O,下列結(jié)論正確的是
A.S
ABCD=4S
△AOBB.AC=BD
C.AC⊥BD
D.
ABCD是軸對稱圖形
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,菱形ABCD的周長為
,對角線AC和BD相交于點(diǎn)O,AC:BD=1:2,則AO:BO=
,菱形ABCD的面積S=
.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:解答題
已知:如圖,把長方形紙片ABCD沿EF折疊后.點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′的位置上.若∠1=60°,AE=1.
(1)求∠2、∠3的度數(shù);
(2)求長方形紙片ABCD的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:單選題
下列命題中,假命題的是( )
A.四個角都相等的四邊形是矩形 |
B.兩組對邊分別相等的四邊形是平行四邊形 |
C.四條邊都相等的四邊形是正方形 |
D.兩條對角線互相垂直平分的四邊形是菱形 |
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,△ABC中,AB=AC,AD,CD分別是△ABC兩個外角的平分線。
(1)求證:AC=AD;
(2)若∠B=60°,求證:四邊形ABCD是菱形.
查看答案和解析>>