【題目】如圖,點E,F在菱形ABCD的對邊上,AE⊥BC.∠1=∠2.
(1)判斷四邊形AECF的形狀,并證明你的結論.
(2)若AE=4,AF=2,試求菱形ABCD的面積.
【答案】四邊形AECF是矩形,理由見解析;(2)菱形ABCD的面積=20.
【解析】
(1)由菱形的性質可得AD=BC,AD∥BC,∠BAD=∠BCD,由∠1=∠2可得∠EAF=∠FCB=90°=∠AEC,可得四邊形AECF是矩形;
(2)由勾股定理可求AB的值,由菱形的面積公式可求解.
解:(1)四邊形AECF是矩形
理由如下:
∵四邊形ABCD是菱形
∴AD=BC=AB,AD∥BC,∠BAD=∠BCD,
∵AE⊥BC
∴AE⊥AD
∴∠FAE=∠AEC=90°
∵∠1=∠2
∴∠BAD-∠1=∠BCD-∠2
∴∠EAF=∠FCB=90°=∠AEC
∴四邊形AECF是矩形
(2)∵四邊形AECF是矩形
∴AF=EC=2
在Rt△ABE中,AB2=AE2+BE2,
∴AB2=16+(AB-2)2,
∴AB=5
∴菱形ABCD的面積=5×4=20
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CE∥BF,CE=BF.則添加下列條件還不能使△EAC≌△FDB.( 。
A. AB=CDB. AE∥DFC. ∠E=∠FD. AE=DF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點A,B,C是數(shù)軸上的三個點,其中AB=12,且A,B兩點表示的數(shù)互為相反數(shù).
(1)請在數(shù)軸上標出原點O,并寫出點A表示的數(shù);
(2)如果點Q以每秒2個單位的速度從點B出發(fā)向左運動,那么經(jīng)過 秒時,點C恰好是BQ的中點;
(3)如果點P以每秒1個單位的速度從點A出發(fā)向右運動,那么經(jīng)過多少秒時PC=2PB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AD∥BC,∠A=∠C,點P在邊AB上.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AB=AD,以過點P的直線為軸,將四邊形ABCD折疊,使點B、C分別落在點B′、C′上,且B′C′經(jīng)過點D,折痕與四邊形的另一交點為Q.在圖2中作出四邊形PB′C′Q(保留作圖痕跡,不必說明作法和理由).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國民體質監(jiān)測中心等機構開展了青少年形體測評.專家組隨機抽查了某市若干名初中學生坐姿、站姿、走姿的好壞情況.我們對專家的測評數(shù)據(jù)作了適當處理(如果一個學生有一種以上不良姿勢,我們以他最突出的一種作記載),并將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中所給信息解答下列問題:
【1】請將兩幅統(tǒng)計圖補充完整;
【2】在這次形體測評中,一共抽查了 名學生,如果全市有10萬名初中生,那么全市初中生中,三姿良好的學生約有 人;
【3】根據(jù)統(tǒng)計結果,請你簡單談談自己的看法.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,經(jīng)過點A(6,0)的直線y=kx﹣3與直線y=﹣x交于點B,點P從點O出發(fā)以每秒1個單位長度的速度向點A勻速運動.
(1)求點B的坐標;
(2)當△OPB是直角三角形時,求點P運動的時間;
(3)當BP平分△OAB的面積時,直線BP與y軸交于點D,求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某縣為創(chuàng)建省文明衛(wèi)生城市,計劃將城市道路兩旁的人行道進行改造,經(jīng)調查可知,若該工程由甲工程隊單獨來做恰好在規(guī)定時間內完成;若該工程由乙工程隊單獨完成,則需要的天數(shù)是規(guī)定時間的2倍,若甲、乙兩工程隊合作6天后,余下的工程由甲工程隊單獨來做還需3天完成.
(1)問該縣要求完成這項工程規(guī)定的時間是多少天?
(2)已知甲工程隊做一天需付給工資5萬元,乙工程隊做一天需付給工資3萬元.現(xiàn)該工程由甲、乙兩個工程隊合作完成,該縣準備了工程工資款65萬元.請問該縣準備的工程工資款是否夠用?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,兩線相交于F點.
(1)若∠BAC=60°,∠C=70°,求∠AFB的大;
(2)若D是BC的中點,∠ABE=30°,求證:△ABC是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖像分別與x軸、y軸交于點A、B,以線段AB為腰在第二象限內作等腰Rt△ABC,∠BAC=90°.
(1)直接寫出A、B兩點的坐標,并求線段AB的長;
(2)求過B、C兩點的直線的函數(shù)表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com