【題目】如圖,四邊形ABCD中,AC=a,BD=b,且AC⊥BD,順次連接四邊形ABCD各邊的中點,得到四邊形A1B1C1D1,再順次連接四邊形A1B1C1D1各邊的中點,得到四邊形A2B2C2D2;…;如此進行下去,得到四邊形A7B7C7D7,那么四邊A7B7C7D7形的周長為______.
【答案】
【解析】
根據(jù)三角形中位線性質定理可得每一次取各邊中點,所形成的新四邊形周長都為前一個的;并且四邊形是平行四邊形,即可計算四邊A7B7C7D7形的周長,
解:∵在四邊形ABCD中,順次連接四邊形ABCD各邊中點,得到四邊形A1B1C1D1,
∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
∴A1D1∥B1C1,A1B1∥C1D1,
∴四邊形A1B1C1D1是平行四邊形;
同理,四邊形A7B7C7D7是平行四邊形;
根據(jù)中位線的性質知,A7B7=A5B5;A5B5=A3B3;A3B3=A1B1;A1B1=AC;
故可得A7B7=×××AC=;
同理可得:B7C7=;
故四邊形A7B7C7D7的周長是2×=.
故答案為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB=5,點P是AC上的動點,連接BP,以BP為邊作等邊△BPQ,連接CQ,則點P在運動過程中,線段CQ長度的最小值是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文具零售店準備從批發(fā)市場選購A、B兩種文具,批發(fā)價A種為12元/件,B種為8元/件.若該店零售A、B兩種文具的日銷售量y(件)與零售價x(元/件)均成一次函數(shù)關系.(如圖)
(1)求y與x的函數(shù)關系式;
(2)該店計劃這次選購A、B兩種文具的數(shù)量共100件,所花資金不超過1000元,并希望全部售完獲利不低于296元,若按A種文具每件可獲利4元和B種文具每件可獲利2元計算,則該店這次有哪幾種進貨方案?
(3)若A種文具的零售價比B種文具的零售價高2元/件,求兩種文具每天的銷售利潤W(元)與A種文具零售價x(元/件)之間的函數(shù)關系式,并說明A、B兩種文具零售價分別為多少時,每天銷售的利潤最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知一個多邊形的內角和是它的外角和的 3 倍,求這個多邊形的邊數(shù).
(2)如圖,點F 是△ABC 的邊 BC 延長線上一點.DF⊥AB,∠A=30°,∠F=40°,求∠ACF 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,
(1)描出A(﹣4,3)、B(﹣1,0)、C(﹣2,3)三點.
(2)△ABC 的面積是多少?
(3)作出△ABC 關于 y 軸的對稱圖形.
(4)請在x 軸上求作一點P,使△PA1C1 的周長最小,并直接寫出點P 的坐標
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1).
(1)繼續(xù)填寫:A6(________,________),A7(________,________),A8(________,________),A9((________,________).A10((________,________),A11(________,________),A12(________,________),A13(________,________).
(2)寫出點A2010(________,________),A2011(________,________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直角坐標平面內兩點A(-2,-3)、B(3,-3),將點B向上平移5個單位到達點C,求:
(1)A、B兩點間的距離;
(2)寫出點C的坐標;
(3)四邊形OABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填寫理由:
已知:如圖,ABC是直線,∠1=115°,∠D=65°.
求證:AB∥DE.
證明:∵ABC是一直線,(已知)
∴∠1+∠2=180°( )
∵∠1=115°(已知)
∴∠2=65°
又∵∠D=65°(已知)
∴∠2=∠D
∴ ∥ ( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com