【題目】如圖,在航線l的兩側(cè)分別有觀測點(diǎn)A和B,點(diǎn)A到航線的距離為2km,點(diǎn)B位于點(diǎn)A北偏東60°方向且與A相距10km.現(xiàn)有一艘輪船從位于點(diǎn)B南偏西76°方向的C處,正沿該航線自西向東航行,5分鐘后該輪船行至點(diǎn)A的正北方向的D處.
(1)求觀測點(diǎn)B到航線的距離;
(2)求該輪船航行的速度(結(jié)果精確到0.1km/h).
(參考數(shù)據(jù): ≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
【答案】(1)觀測點(diǎn)到航線的距離為3km(2)該輪船航行的速度約為40.6km/h
【解析】試題分析:(1)設(shè)AB與l交于點(diǎn)O,利用∠DAO=60°,利用∠DAO的余弦求出OA長,從而求得OB長,繼而求得BE長即可;
(2)先計算出DE=EF+DF=求出DE=5,再由進(jìn)而由tan∠CBE=求出EC,即可求出CD的長,進(jìn)而求出航行速度.
試題解析:(1)設(shè)AB與l交于點(diǎn)O,
在Rt△AOD中,
∵∠OAD=60°,AD=2(km),
∴OA==4(km),
∵AB=10(km),
∴OB=AB﹣OA=6(km),
在Rt△BOE中,∠OBE=∠OAD=60°,
∴BE=OBcos60°=3(km),
答:觀測點(diǎn)B到航線l的距離為3km;
(2)∵∠OAD=60°,AD=2(km),∴OD=AD·tan60°=2 ,
∵∠BEO=90°,BO=6,BE=3,∴OE==3,
∴DE=OD+OE=5(km);
CE=BEtan∠CBE=3tan76°,
∴CD=CE﹣DE=3tan76°﹣5≈3.38(km),
∵5(min)= (h),∴v==12CD=12×3.38≈40.6(km/h),
答:該輪船航行的速度約為40.6km/h.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)D的坐標(biāo)是(0,1),點(diǎn)A的坐標(biāo)是(-2,2),則點(diǎn)B的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級1至4班計劃每班購買數(shù)量相同的圖書布置班級讀書角,但是由于種種原因,實(shí)際購書量與計劃有出入,下表是實(shí)際購書情況:
班級 | 1班 | 2班 | 3班 | 4班 |
實(shí)際購買量(本) | a | 33 | c | 21 |
實(shí)際購買量與計劃購數(shù)量的差值(本) | +12 | b | -8 | -9 |
(1) 直接寫出a=__________,b=__________,c=__________
(2) 根據(jù)記錄的數(shù)據(jù)可知4個班實(shí)際購書共_________本
(3) 書店給出一種優(yōu)惠方案:一次購買不少于15本,其中2本書免費(fèi).若每本書售價為30元,請計算這4個班整體購書的最低總花費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是由經(jīng)過平移得到的,其中A,B,C三點(diǎn)的對應(yīng)點(diǎn)分別是,,,它們在平面直角坐標(biāo)系中的坐標(biāo)如下表所示:
(1)觀察表中各對應(yīng)點(diǎn)坐標(biāo)的變化,并填空:__________,__________.
(2)在下圖的平面直角坐標(biāo)系中畫出和.
(3)寫出是怎樣平移得到的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若正比例函數(shù)y=kx(k≠0)的圖象經(jīng)過點(diǎn)P(2,3),則該函數(shù)的圖象經(jīng)過的點(diǎn)是( )
A.(3,2)B.(1,6)C.(2,3)D.(1,6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(﹣4,3),B(﹣3,1),C(﹣1,3).
(1)請按下列要求畫圖:
①平移△ABC,使點(diǎn)A的對應(yīng)點(diǎn)A1的坐標(biāo)為(﹣4,﹣3),請畫出平移后的△A1B1C1;
②△A2B2C2與△ABC關(guān)于原點(diǎn)O中心對稱,畫出△A2B2C2.
(2)若將△A1B1C1繞點(diǎn)M旋轉(zhuǎn)可得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心M點(diǎn)的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為直線.下列結(jié)論中,正確的是( )
A. abc>0 B. a+b=0 C. 2b+c>0 D. 4a+c<2b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,∠C=90°,CM⊥AB于M,AT平分∠BAC交CM于D,交BC于T,過D作DE∥AB交BC于E,求證CT=BE
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于點(diǎn)M,交BE于點(diǎn)G,AD平分∠MAC,交BC于點(diǎn)D,交BE于點(diǎn)F.
(1)判斷直線BE與線段AD之間的關(guān)系,并說明理由;
(2)若∠C=30°,圖中是否存在等邊三角形?若存在,請寫出來并證明;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com