【題目】如圖,在正方形ABCD中,點(diǎn)A在y軸正半軸上,點(diǎn)B的坐標(biāo)為(0,﹣3),反比例函數(shù)y=﹣的圖象經(jīng)過點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)若點(diǎn)P是反比例函數(shù)圖象上的一點(diǎn)且S△PAD=S正方形ABCD;求點(diǎn)P的坐標(biāo).
【答案】(1)(5,﹣3);(2)點(diǎn)P的坐標(biāo)為(﹣,12)或(,﹣8).
【解析】
試題分析:(1)先由點(diǎn)B的坐標(biāo)為(0,﹣3)得到C的縱坐標(biāo)為﹣3,然后代入反比例函數(shù)的解析式求得橫坐標(biāo)為5,即可求得點(diǎn)C的坐標(biāo)為(5,﹣3);
(2)設(shè)點(diǎn)P到AD的距離為h,利用△PAD的面積恰好等于正方形ABCD的面積得到h=10,再分類討論:當(dāng)點(diǎn)P在第二象限時,則P點(diǎn)的縱坐標(biāo)yP=h+2=12,可求的P點(diǎn)的橫坐標(biāo),得到點(diǎn)P的坐標(biāo)為(﹣,12);②當(dāng)點(diǎn)P在第四象限時,P點(diǎn)的縱坐標(biāo)為yP=﹣(h﹣2)=﹣8,再計(jì)算出P點(diǎn)的橫坐標(biāo).于是得到點(diǎn)P的坐標(biāo)為(,﹣8).
解:(1)∵點(diǎn)B的坐標(biāo)為(0,﹣3),
∴點(diǎn)C的縱坐標(biāo)為﹣3,
把y=﹣3代入y=﹣得,﹣3=﹣
解得x=5,
∴點(diǎn)C的坐標(biāo)為(5,﹣3);
(2)∵C(5,﹣3),
∴BC=5,
∵四邊形ABCD是正方形,
∴AD=5,
設(shè)點(diǎn)P到AD的距離為h.
∵S△PAD=S正方形ABCD,
∴×5×h=52,
解得h=10,
①當(dāng)點(diǎn)P在第二象限時,yP=h+2=12,
此時,xP==﹣,
∴點(diǎn)P的坐標(biāo)為(﹣,12),
②當(dāng)點(diǎn)P在第四象限時,yP=﹣(h﹣2)=﹣8,
此時,xP==,
∴點(diǎn)P的坐標(biāo)為(,﹣8).
綜上所述,點(diǎn)P的坐標(biāo)為(﹣,12)或(,﹣8).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填幻方:將1、2、3、4、5、6、7、8、9這九個數(shù)字分別填在如圖所示的九個空格中,要求每一行從左到右的數(shù)字逐漸增大,每一列從上到下的數(shù)字也逐漸增大.當(dāng)數(shù)字2、4固定在圖中所示的位置時,按規(guī)則填寫空格,所有可能出現(xiàn)的結(jié)果有( 。
A.4種B.6種C.8種D.9種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB<AD,∠D=30°,CD=4,以AB為直徑的⊙O交BC于點(diǎn)E,則陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C、D是圓上兩點(diǎn),且OD∥AC,OD與BC交于點(diǎn)E.
(1)求證:E為BC的中點(diǎn);
(2)若BC=8,DE=3,求AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】前年甲廠全年的產(chǎn)值比乙廠多12萬元,在其后的兩年內(nèi),兩個廠的產(chǎn)值都有所增加:甲廠每年的產(chǎn)值比上一年遞增10萬元,而乙廠每年的產(chǎn)值比上一年增加相同的百分?jǐn)?shù).去年甲廠全年的產(chǎn)值仍比乙廠多6萬元,而今年甲廠全年產(chǎn)值反而比乙廠少3.2萬元.前年甲乙兩車全年的產(chǎn)值分別是多少?乙廠每年的產(chǎn)值遞增的百分?jǐn)?shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC 的頂點(diǎn)坐標(biāo)分別為A(0,-3),B(3,-2),C(2,-4).
(1)在圖中作出△ABC關(guān)于x軸對稱的△A1B1C1.
(2)點(diǎn)C1的坐標(biāo)為: .
(3)△ABC的周長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解
在平面直角坐標(biāo)系中,兩條直線,
①當(dāng)時,,且;②當(dāng)時,.
類比應(yīng)用
(1)已知直線,若直線與直線平行,且經(jīng)過點(diǎn),試求直線的表達(dá)式;
拓展提升
(2)如圖,在平面直角坐標(biāo)系中,的頂點(diǎn)坐標(biāo)分別為:,試求出邊上的高所在直線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù) y=ax2+bx+c(a≠0)的圖象與 x 軸交于 A、B 兩點(diǎn),與 y 軸交于點(diǎn) C,且對稱軸為直線 x=1, 點(diǎn) B 的坐標(biāo)為(-1,0).則下面的五個結(jié)論:①2a+b=0;②abc>0;③當(dāng) y<0 時,x<-1 或 x>2;④c<4b;⑤ a+b>m(am+b)(m≠1),其中正確的個數(shù)是( )
A. 2 個 B. 3個 C. 4 個 D. 5 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(diǎn)(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com