【題目】如圖,OA、OB、OC都是O的半徑,AOB=2BOC,

(1)求證:ACB=2BAC

(2)若AC平分OAB,求AOC的度數(shù).

【答案】(1)證明詳見解析;(2)135°.

【解析】

試題分析:(1)根據(jù)圓周角定理可得BOC=2BAC,AOB=2ACB,再根據(jù)條件AOB=2BOC可得ACB=2BAC;

(2)設BAC=x°,則OAB=2BAC=2x°,再表示出AOB=2ACB=4BAC=4x°,再根據(jù)三角形內角和為180°可得方程4x+2x+2x=180,再解即可得x的值,進而可得答案.

試題解析:(1)在O中,∵∠AOB=2ACB,BOC=2BAC,

∵∠AOB=2BOC.

∴∠ACB=2BAC

(2)解:設BAC=x°.

AC平分OAB,

∴∠OAB=2BAC=2x°,

∵∠AOB=2ACB,ACB=2BAC,

∴∠AOB=2ACB=4BAC=4x°,

OAB中,

AOB+OAB+OBA=180°,

4x+2x+2x=180,

解得:x=22.5,

∴∠AOC=6x°=135°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.

(1)求二次函數(shù)的表達式;

(2)y軸上是否存在一點P,使PBC為等腰三角形.若存在,請求出點P的坐標;

(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M 達點B時,點M、N同時停止運動,問點M、N運動到何處時,MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠大門是一拋物線水泥建筑物(如圖),大門地面寬AB=4 m,頂部C離地面高為4.4 m.

(1)以AB所在直線為x軸,拋物線的對稱軸為y軸,建立平面直角坐標系,求該拋物線對應的函數(shù)表達式;

(2)現(xiàn)有一輛載滿貨物的汽車欲通過大門,貨物頂點距地面2.8 m,裝貨寬度為2.4 m,請通過計算,判斷這輛汽車能否順利通過大門.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】盒子里裝有12張紅色卡片,16張黃色卡片,4張黑色卡片和若干張藍色卡片,每張卡片除顏色外都相同,從中任意摸出一張卡片,摸到紅色卡片的概率是0.24.

(1)從中任意摸出一張卡片,摸到黑色卡片的概率是多少?

(2)求盒子里藍色卡片的個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB、CD是半徑為5的⊙O的兩條弦,AB=8,CD=6,MN是直徑ABMN于點E,CDMN于點F,PEF上的任意一點,PA+PC的最小值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A(-5,0),B(-3,0),點C在y軸的正半軸上,∠CBO=45°,CD∥AB.∠CDA=90°.點P從點Q(4,0)出發(fā),沿x軸向左以每秒1個單位長度的速度運動,運動時時間t秒.

(1)求點C的坐標;

(2)當∠BCP=15°時,求t的值;

(3)以點P為圓心,PC為半徑的⊙P隨點P的運動而變化,當⊙P與四邊形ABCD的邊(或邊所在的直線)相切時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】動物學家通過大量的調查估計出,某種動物活到20歲的概率為0.8,活到25歲的概率是0.5,活到30歲的概率是0.3.現(xiàn)年20歲的這種動物活到25歲的概率為多少?現(xiàn)年25歲的這種動物活到30歲的概率為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,B兩地相距80km,甲、乙兩人騎車分別從A,B兩地同時相向而行,他們都保持勻速行駛.如圖,l1,l2分別表示甲、乙兩人離B地的距離y(km)與騎車時間x(h)的函數(shù)關系.根據(jù)圖象得出的下列結論,正確的個數(shù)是( 。

甲騎車速度為30km/小時,乙的速度為20km/小時;

②l1的函數(shù)表達式為y=80﹣30x;

③l2的函數(shù)表達式為y=20x;

小時后兩人相遇.

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.

(1)求證:DE是⊙O的切線.

(2)求DE的長.

查看答案和解析>>

同步練習冊答案