【題目】如圖,A、B、C是直線l上的三個(gè)點(diǎn),∠DAB=∠DBE=∠ECB=a,且BD=BE.
(1)求證:AC=AD+CE;
(2)若a=120°,點(diǎn)F在直線l的上方,△BEF為等邊三角形,補(bǔ)全圖形,請(qǐng)判斷△ACF的形狀,并說(shuō)明理由.
【答案】(1)詳見解析;(2)△ACF為等邊三角形.
【解析】
(1)由外角的性質(zhì)可得∠ADB=∠CBE,由“AAS”可得△ADB≌△CBE,可得AD=CB,AB=CE,可得結(jié)論;
(2)由“SAS”可證△AFB≌△CFE,可得AF=CF,∠AFB=∠CFE,可得∠AFC=∠AFB+∠BFC=∠CFE+∠BFC=60°,可得△ACF是等邊三角形.
證明:(1)∵∠DAB=∠DBE=α,
∴∠ADB+∠ABD=∠CBE+∠ABD=180°﹣α.
∴∠ADB=∠CBE
在△ADB和△CBE中,
∵,
∴△ADB≌△CBE(AAS)
∴AD=CB,AB=CE.
∴AC=AB+BC=AD+CE
(2)補(bǔ)全圖形.
△ACF為等邊三角形.
理由如下:
∵△BEF為等邊三角形,
∴BF=EF,∠BFE=∠FBE=∠FEB=60°.
∵∠DBE=120°,∴∠DBF=60°.
∵∠ABD=∠CEB(已證),
∴∠ABD+∠DBF=∠CEB+∠FEB,
即∠ABF=∠CEF.
∵AB=CE(已證),
∴△AFB≌△CFE(SAS),
∴AF=CF,∠AFB=∠CFE.
∴∠AFC=∠AFB+∠BFC=∠CFE+∠BFC=60°.
∴△ACF為等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在已知的△ABC中,按以下步驟作圖:①分別以B、C為圓心,以大于BC的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)M、N;②作直線MN交AB于點(diǎn)D,連接CD,若CD=AD,∠B=20°,則下列結(jié)論中錯(cuò)誤的是( 。
A. ∠CAD=40° B. ∠ACD=70° C. 點(diǎn)D為△ABC的外心 D. ∠ACB=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=ax+b(a≠0)的圖象與x軸、y軸分別交于點(diǎn)B、C,與反比例函數(shù)y= (m>0)分別交于點(diǎn)A、B.已知A(﹣8,y0),D(x0,4),tan∠BOA=
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△BOD的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】夷陵區(qū)園林處為了對(duì)一段公路進(jìn)行綠化,計(jì)劃購(gòu)買A、B兩種風(fēng)景樹,已知若用8000元買A種樹要比買B種樹多買20棵,A、B兩種樹的相關(guān)信息如下表:
項(xiàng)目品種 | 單價(jià)(元/棵) | 成活率 |
A | m | 91% |
B | 100 | 97% |
(1)求表中m的值;
(2)預(yù)計(jì)對(duì)這段公路的綠化需購(gòu)1000棵這樣的風(fēng)景樹.若希望這批樹的成活率不低于94%,且使購(gòu)樹的總費(fèi)用最低,應(yīng)選購(gòu)A、B兩種樹各多少棵?最低費(fèi)用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E,AD與CD相交于D,BC與CD相交于C,連接OD、OC,對(duì)于下列結(jié)論:
①OD2=DECD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CDOA;⑤∠DOC=90°,
其中正確的是_____.(只需填上正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F. 已知AD=2cm,BC=5cm.
(1)求證:FC=AD;
(2)求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D為等邊三角形ABC內(nèi)的一點(diǎn), DA=5,DB=4,DC=3,將線段AD以點(diǎn)A為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段AD',下列結(jié)論:①點(diǎn)D與點(diǎn)D'的距離為5;②∠ADC=150°;③△ACD'可以由△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到;④點(diǎn)D到CD'的距離為3;⑤S四邊形ABCD′=6+ ,其中正確的有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:;
(2)x2﹣4x+1=0;
(3)解下列不等式組,并把其解集在所給的數(shù)軸(如圖)上表示出來(lái):
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=,AD=3,點(diǎn)E從點(diǎn)B出發(fā),沿BC邊運(yùn)動(dòng)到點(diǎn)C,連結(jié)DE,點(diǎn)E作DE的垂線交AB于點(diǎn)F.在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,以EF為邊,在EF上方作等邊△EFG,則邊EG的中點(diǎn)H所經(jīng)過(guò)的路徑長(zhǎng)是( 。
A. 2 B. 3 C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com