【題目】某農(nóng)產(chǎn)品店利用網(wǎng)絡將優(yōu)質(zhì)土特產(chǎn)銷往全國,其中銷售的核桃和花生這兩種商品的相關信息如下表:
商品 | 核桃 | 花生 |
規(guī)格 | 1 kg/袋 | 2 kg/袋 |
利潤 | 10元/袋 | 8元/袋 |
根據(jù)上表提供的信息,解答下列問題:
(1)已知今年上半年,該店銷售上表規(guī)格的核桃和花生共3000kg,獲得利潤21000元,求上半年該店銷售這種規(guī)格的核桃和花生各多少袋;
(2)根據(jù)之前的銷售情況,估計今年下半年,該店還能銷售上表規(guī)格的核桃和花生共2000kg,其中,核桃的銷售量不低于600kg.假設今年下半年,銷售上表規(guī)格的核桃為(kg),銷售上表規(guī)格的核桃和花生獲得的總利潤為(元),寫出與之間的函數(shù)關系式,并求下半年該店銷售這種規(guī)格的核桃和花生至少獲得的總利潤.
【答案】(1)今年上半年農(nóng)產(chǎn)品店銷售這種規(guī)格的核桃1500袋和花生750袋;(2)下半年該農(nóng)產(chǎn)品店銷售這種規(guī)格的核桃和花生至少獲得的總利潤為11600元.
【解析】
(1)設今年上半年農(nóng)產(chǎn)品店銷售這種規(guī)格的核桃mkg.根據(jù)總利潤為21000,構建方程即可;
(2)構建一次函數(shù),利用一次函數(shù)的性質(zhì)即可解決問題.
(1)設今年上半年農(nóng)產(chǎn)品店銷售這種規(guī)格的核桃mkg,花生(3000-m)kg.
由題意:10m+8×=21000,
解得m=1500,3000-m=1500,
則銷售核桃有1500(袋),花生=750(袋)
答:今年上半年農(nóng)產(chǎn)品店銷售這種規(guī)格的核桃1500袋和花生750袋.
(2)由題意:W=10x+=6x+8000,
∵600≤x<2000,
當x=600時,y有最小值,最小值為11600元.
答:下半年該農(nóng)產(chǎn)品店銷售這種規(guī)格的核桃和花生至少獲得的總利潤為11600元.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y = 2x2 -4x -6.
(1)用配方法將y = 2x2 -4x -6化成y = a (x - h) 2 + k的形式;并寫出對稱軸和 頂點坐標。
(2)在平面直角坐標系中,畫出這個二次函數(shù)的圖象;
(3)當時,求y的取值范圍;
(4)求函數(shù)圖像與兩坐標軸交點所圍成的三角形的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.
(1)從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;
(2)小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是BC的中點,DE⊥AB于E,DF⊥AC于F,BE=CF.
(1)求證:AD平分∠BAC;
(2)連接EF,求證:AD垂直平分EF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC的平分線BE與∠ACB外角的平分線CE交于點E.
(1)如圖1,若∠BAC=40°,則∠BEC= °
(2)如圖2,將∠BAC變?yōu)?/span>60°,則∠BEC= °,寫出∠BAC與∠BEC的關系;并說明你的理由
(3)在圖1的基礎上過點E分別作EN⊥BA于N,EQ⊥AC于Q,EM⊥BD于M,如圖3,
求證:△ANE≌AQE,并求出∠NAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∥,,點是射線上一動點(與點不重合),,分別平分和,交射線于點,.
(1)求的度數(shù);
(2)當點運動時,與之間存在怎樣的數(shù)量關系?說明理由;
(3)當點運動到使時,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形網(wǎng)格中,每個小格的頂點叫做格點.當所作正方形邊上的點剛好在格點上的點稱為整點.如圖中四條邊上的整點共有個;四條邊上的整點共有個.請你觀察圖中正方形四條邊上的整點的個數(shù)…按此規(guī)律,推算出正方形四條邊上的整點共有________個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸分別交于點A、B,與y軸交于點C,且OA=1,OB=3,頂點為D,對稱軸交x軸于點Q.
(1)求拋物線對應的二次函數(shù)的表達式;
(2)點P是拋物線的對稱軸上一點,以點P為圓心的圓經(jīng)過A、B兩點,且與直線CD相切,求點P的坐標;
(3)在拋物線的對稱軸上是否存在一點M,使得△DCM∽△BQC?如果存在,求出點M的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程3x2-(a-3)x-a=0(a>0).
(1)求證:方程總有兩個不相等的實數(shù)根;
(2)若方程有一個根大于2,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com