【題目】如圖所示,在△ABC中,AB=CB,以BC為直徑的⊙O交AC于點(diǎn)E,過(guò)點(diǎn)E作⊙O的切線交AB于點(diǎn)F.
(1)求證:EF⊥AB;
(2)若AC=16,⊙O的半徑是5,求EF的長(zhǎng).
【答案】(1)證明見解析;(2) 4.8.
【解析】
(1)連結(jié)OE,根據(jù)等腰三角形的性質(zhì)可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,兩直線平行即可判定OE∥AB,又因EF是⊙O的切線,根據(jù)切線的性質(zhì)可得EF⊥OE,由此即可證得EF⊥AB;(2)連結(jié)BE,根據(jù)直徑所對(duì)的圓周角為直角可得,∠BEC=90°,再由等腰三角形三線合一的性質(zhì)求得AE=EC =8,在Rt△BEC中,根據(jù)勾股定理求的BE=6,再由△ABE的面積=△BEC的面積,根據(jù)直角三角形面積的兩種表示法可得8×6=10×EF,由此即可求得EF=4.8.
(1)證明:連結(jié)OE.
∵OE=OC,
∴∠OEC=∠OCA,
∵AB=CB,
∴∠A=∠OCA,
∴∠A=∠OEC,
∴OE∥AB,
∵EF是⊙O的切線,
∴EF⊥OE,
∴EF⊥AB.
(2)連結(jié)BE.
∵BC是⊙O的直徑,
∴∠BEC=90°,
又AB=CB,AC=16,
∴AE=EC=AC=8,
∵AB=CB=2BO=10,
∴BE=,
又△ABE的面積=△BEC的面積,即8×6=10×EF,
∴EF=4.8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知函數(shù)y=x+1和y=ax+3的圖象交于點(diǎn)P,點(diǎn)P的橫坐標(biāo)為1,
(1)關(guān)于x,y的方程組 的解是 ;
(2)a= ;
(3)求出函數(shù)y=x+1和y=ax+3的圖象與x軸圍成的幾何圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的袋中裝有個(gè)紅球和個(gè)白球,每個(gè)球除顏色外,其余特征均相同.
任意摸出個(gè)球,摸出紅球的概率是多少?
任意摸出個(gè)球,摸到紅球小明勝,摸出白球小剛勝,這個(gè)游戲公平嗎?如果不公平,請(qǐng)你在此基礎(chǔ)上設(shè)計(jì)一個(gè)公平的游戲,并說(shuō)明你的設(shè)計(jì)理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖分別是兩根木棒及其影子的情形.
(1)哪個(gè)圖反映了太陽(yáng)光下的情形?哪個(gè)圖反映了路燈下的情形?
(2)在太陽(yáng)光下,已知小明的身高是1.8米,影長(zhǎng)是1.2米,旗桿的影長(zhǎng)是4米,求旗桿的高;
(3)請(qǐng)?jiān)趫D中分別畫出表示第三根木棒的影長(zhǎng)的線段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,平行四邊形形ABCD中,過(guò)對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)請(qǐng)?zhí)砑右粋(gè)條件使四邊形BEDF為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,點(diǎn)D為BC的中點(diǎn),AB =DE,BE∥AC.
(1)求證:△ABC≌△DEB;
(2)連結(jié)AD、AE、CE,如圖2.
①求證:CE是∠ACB的角平分線;
②請(qǐng)判斷△ABE是什么特殊形狀的三角形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是BC的中點(diǎn),AB⊥BC,DC⊥BC,AE平分∠BAD,下列結(jié)論:①∠AED=90°②∠ADE=∠CDE③DE=BE④AD=AB+CD,四個(gè)結(jié)論中成立的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABCD中,點(diǎn)E為AB邊的中點(diǎn),連接CE,將△BCE沿著CE翻折,點(diǎn)B落在點(diǎn)G處,連接AG并延長(zhǎng),交CD于F.
(1)求證:四邊形AECF是平行四邊形;
(2)若CF=5,△GCE的周長(zhǎng)為20,求四邊形ABCF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某型號(hào)新能源純電動(dòng)汽車充滿電后,蓄電池剩余電量(千瓦時(shí))關(guān)于已行駛路程 (千米)的函數(shù)圖象.
(1)根據(jù)圖象,直接寫出蓄電池剩余電量為35千瓦時(shí)時(shí)汽車已行駛的路程,當(dāng)時(shí),求1千瓦時(shí)的電量汽車能行駛的路程;
(2)當(dāng)時(shí)求關(guān)于的函數(shù)表達(dá)式,并計(jì)算當(dāng)汽車已行駛180千米時(shí),蓄電池的剩余電量.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com