【題目】如圖,在中,,,,M是AB上的動(dòng)點(diǎn)不與A、B重合,過(guò)點(diǎn)M作交AC于點(diǎn)N,以MN為直徑作,并在內(nèi)作內(nèi)接矩形設(shè).
的面積______,______;用含x的代數(shù)式表示
在動(dòng)點(diǎn)M的運(yùn)動(dòng)過(guò)程中,設(shè)與四邊形MNCB重合部分的面積為試求y關(guān)于x的函數(shù)表達(dá)式,并求出x為何值時(shí),y的值最大,最大值為多少?
【答案】(1);;(2)y關(guān)于x的函數(shù)表達(dá)式為,當(dāng)時(shí),y的值最大,最大值為.
【解析】
在中,利用勾股定理可求出BC的值,由,利用平行線分線段成比例可求出AN、MN的值,再利用三角形的面積公式結(jié)合矩形的性質(zhì)即可求出的面積S的值;
分及兩種情況考慮:當(dāng)時(shí),利用的結(jié)論可得出y關(guān)于x的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)可求出此時(shí)y的最大值;當(dāng)時(shí),由可得出BM、PF的值,利用三角形的面積公式結(jié)合可得出y關(guān)于x的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)可求出此時(shí)y的最大值綜上,此題得解.
在中,,,,
.
,
,即.
,
,,
.
四邊形AMPN為矩形,
.
故答案為:;
當(dāng)點(diǎn)M為線段AB中點(diǎn)時(shí),點(diǎn)P落在線段BC上,
分及兩種情況考慮.
當(dāng)時(shí),如圖1所示.
,
,
當(dāng)時(shí),y取最大值,最大值為1;
當(dāng)時(shí),如圖2所示.
,則,,
,
,
,
.
,
當(dāng)x取時(shí),y取最大值,最大值為.
綜上所述:y關(guān)于x的函數(shù)表達(dá)式為,
當(dāng)時(shí),y的值最大,最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地特色農(nóng)產(chǎn)品在國(guó)際市場(chǎng)上頗具競(jìng)爭(zhēng)力,其中綠色蔬菜遠(yuǎn)銷日本和韓國(guó)等地上市時(shí),若按市場(chǎng)價(jià)格10元千克在新區(qū)收購(gòu)了2000千克綠色蔬菜存放入冷庫(kù)中據(jù)預(yù)測(cè),綠色蔬菜的市場(chǎng)價(jià)格每天每千克將上漲元,但冷庫(kù)存放這批綠色蔬菜時(shí)每天需要支出各種費(fèi)用合計(jì)340元,而且綠色蔬菜在冷庫(kù)中最多保存110天,同時(shí),平均每天有6千克的綠色蔬菜損壞不能出售.
若存放x天后,將這批綠色蔬菜一次性出售,設(shè)這批綠色蔬菜的銷售總金額為y元,試寫(xiě)出y與x之間的函數(shù)關(guān)系式.
這批綠色蔬菜存放多少天后出售可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)風(fēng)力資源豐富,為了實(shí)現(xiàn)低碳環(huán)保,該鄉(xiāng)鎮(zhèn)決定開(kāi)展風(fēng)力發(fā)電,打算購(gòu)買(mǎi)10臺(tái)風(fēng)力發(fā)電機(jī)組.現(xiàn)有A,B兩種型號(hào)機(jī)組,其中A型機(jī)組價(jià)格為12萬(wàn)元/臺(tái),月均發(fā)電量為2.4萬(wàn)kw.h;B型機(jī)組價(jià)格為10萬(wàn)元/臺(tái),月均發(fā)電量為2萬(wàn)kw.h.經(jīng)預(yù)算該鄉(xiāng)鎮(zhèn)用于購(gòu)買(mǎi)風(fēng)力發(fā)電機(jī)組的資金不高于105萬(wàn)元.
(1)請(qǐng)你為該鄉(xiāng)鎮(zhèn)設(shè)計(jì)幾種購(gòu)買(mǎi)方案;
(2)如果該鄉(xiāng)鎮(zhèn)用電量不低于20.4萬(wàn)kw.h/月,為了節(jié)省資金,應(yīng)選擇那種購(gòu)買(mǎi)方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC≌△ADE,BC與DE交于點(diǎn)F.若∠BAE=60°,∠DAC=160°,則∠DFC的度數(shù)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列括號(hào)內(nèi)填理由:已知:如圖,AC∥DE,CD、EF分別為∠ACB、∠DEB的平分線.
求證:CD∥EF
證明:∵AC∥DE〔已知)
∴ = ( )
∵CD、EF分別為∠ACB、∠DEB的平分線.(已知)
, ( )
∴∠DCB=∠FEB
∴CD∥EF( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】雞兔同籠問(wèn)題是我國(guó)古代著名趣題之一,大約在 1500 年前,《孫子算經(jīng)》中就記載了這個(gè)有趣的問(wèn)題.書(shū)中是這樣敘述的:“今有雉兔同籠,上有三十五頭,下有九十四足,問(wèn)雉兔各幾何?”這四句話的意思是:有若干只雞、兔同在一個(gè)籠子里,從上上面數(shù),有 35 個(gè)頭;從下面數(shù),有 94 只腳 .求籠中各有幾只雞和兔?經(jīng)計(jì)算可得( )
A. 雞 20 只,兔 15 只 B. 雞 12 只,兔 23 只
C. 雞 15 只,兔 20 只 D. 雞 23 只,兔 12 只
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果三角形有一邊上的中線長(zhǎng)恰好等于這邊的長(zhǎng),那么這個(gè)三角形叫“恰等三角形”,這條中線叫“恰等中線”.
(直角三角形中的“恰等中線”)
(1)如圖1,在△ABC中,∠C=90°,AC=,BC=2,AM為△ABC的中線.求證:AM是“恰等中線”.
(等腰三角形中的“恰等中線”)
(2)已知,等腰△ABC是“恰等三角形”,AB=AC=20,求底邊BC的平方.
(一般三角形中的“恰等中線”)
(3)如圖2,若AM是△ABC的“恰等中線”,則BC2,AB2,AC2之間的數(shù)量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某烤鴨店在確定烤鴨的烤制時(shí)間時(shí),主要依據(jù)的是如表數(shù)據(jù):
鴨的質(zhì)量/千克 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 |
烤制時(shí)間/分鐘 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
設(shè)鴨的質(zhì)量為x千克,烤制時(shí)間為t,估計(jì)當(dāng)x=2.2千克時(shí),t的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】早晨,小明步行到離家900米的學(xué)校去上學(xué),到學(xué)校時(shí)發(fā)現(xiàn)眼鏡忘在家中,于是他立即按原路步行回家,拿到眼鏡后立即按原路騎自行車返回學(xué)校.已知小明步行從學(xué)校到家所用的時(shí)間比他騎自行車從家到學(xué)校所用的時(shí)間多10分鐘,小明騎自行車速度是步行速度的3倍.
(1)求小明步行速度(單位:米/分)是多少;
(2)下午放學(xué)后,小明騎自行車回到家,然后步行去圖書(shū)館,如果小明騎自行車和步行的速度不變,小明步行從家到圖書(shū)館的時(shí)間不超過(guò)騎自行車從學(xué)校到家時(shí)間的2倍,那么小明家與圖書(shū)館之間的路程最多是多少米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com