【題目】如圖,點(diǎn)Bab)在第一象限,過BBAy軸于A,過BBCx軸于C,且實(shí)數(shù)a、b滿足(a-b-22+|2a+b-10|≤0,含45角的RtDEF的一條直角邊DFx軸重合,DEx軸于D,點(diǎn)F與坐標(biāo)原點(diǎn)重合,DE=DF=3DEF從某時(shí)刻開始沿著坐標(biāo)軸以1個(gè)單位長度每秒的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.

1)求點(diǎn)B的坐標(biāo);

2)若DEF沿著y軸負(fù)方向運(yùn)動(dòng),連接AE,EG平分∠AEF,EH平分∠AED,當(dāng)EGDF時(shí),求∠HEF的度數(shù);

3)若DEF沿著x軸正方向運(yùn)動(dòng),在運(yùn)動(dòng)過程中,記AEF與長方形OABC重疊部分的面積為S,當(dāng)0t≤4,S=時(shí),請你求出運(yùn)動(dòng)時(shí)間t

【答案】1B4,2);(2)∠HEF==22.5°;(3t=14s.

【解析】

1)利用非負(fù)數(shù)的性質(zhì)即可解決問題;

2)當(dāng)EGDF時(shí),只要證明∠AWED=135°,即可解決問題;

3)分兩種情形①如圖2中,當(dāng)0t2時(shí),重疊部分是△APFS=2-tt=t-t2,②如圖3中,當(dāng)2t≤4時(shí),重疊部分是△PAF,S=t-22=t-2,分別構(gòu)建方程即可解決問題;

解:(1)∵(a-b-22+|2a+b-10|≤0

又∵(a-b-22≥0,|2a+b-10|≥0

,

解得,

B4,2).

2)如圖1中,設(shè)EGy軸于N

當(dāng)EGDF時(shí),∠NEF=EFD=45°,

∵∠AEF=90°,

∴∠AEN=45°,

DEFN,ENDF

∴四邊形DENF是平行四邊形,

∵∠EDF=90°DE=DF,

∴四邊形DENF是正方形,

∴∠DEN=90°

∴∠AED=135°,

EH平分∠AED

∴∠DEH=×135°=67.5°,

∵∠DEF=45°,

∴∠HEF=DEH-DEF=22.5°

3)①如圖2中,當(dāng)0t2時(shí),重疊部分是△APF,S=2-tt=t-t2,

由題意:t-t2=t,

解得t=1,.

②如圖3中,當(dāng)2t≤4時(shí),重疊部分是△PAF,S=t-22=t-2,

由題意:t-2=t,解得t=4,

綜上所述,當(dāng)t=14s時(shí),滿足條件,S=t

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx﹣3(b是常數(shù))經(jīng)過點(diǎn)A(﹣1,0).

(1)求該拋物線的解析式和頂點(diǎn)坐標(biāo);

(2)P(m,t)為拋物線上的一個(gè)動(dòng)點(diǎn),P關(guān)于原點(diǎn)的對稱點(diǎn)為P'.

當(dāng)點(diǎn)P' 落在該拋物線上時(shí),求m的值;

當(dāng)點(diǎn)P' 落在第二象限內(nèi),P'A2取得最小值時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是

A. “明天降雨的概率是80%”表示明天有80%的時(shí)間都在降雨

B. “拋一枚硬幣正面朝上的概率為表示每拋2次就有一次正面朝上

C. “彩票中獎(jiǎng)的概率為1%”表示買100張彩票肯定會(huì)中獎(jiǎng)

D. “拋一枚正方體骰子,朝上的點(diǎn)數(shù)為2的概率為表示隨著拋擲次數(shù)的增加,拋出朝上的點(diǎn)數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在附近

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與坐標(biāo)軸分別交于點(diǎn),與直線交于點(diǎn)是線段上的動(dòng)點(diǎn),連接,若是等腰三角形,則的長為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1A型車和3B型車,銷售額為96萬元;本周已售出2A型車和1B型車,銷售額為62萬元.

1)求每輛A型車和B型車的售價(jià)各為多少萬元?

2)甲公司擬向該店購買AB兩種型號的新能源汽車共6輛,且A型號車不少于2輛,購車費(fèi)不少于130萬元,則有哪幾種購車方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,兩個(gè)全等的△ABC和△DEF中,∠ACB=DFE=90°,AB=DE,其中點(diǎn)B和點(diǎn)D重合,點(diǎn)FBC上,將△DEF沿射線BC平移,設(shè)平移的距離為x,平移后的圖形與△ABC重合部分的面積為y,y關(guān)于x的函數(shù)圖象如圖2所示(其中0xm,mx3,3x4時(shí),函數(shù)的解析式不同)

(1)填空:BC的長為_____;

(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績分別被制成下列兩個(gè)統(tǒng)計(jì)圖:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均成績/環(huán)

中位數(shù)/環(huán)

眾數(shù)/環(huán)

方差

a

7

7

1.2

7

b

8

c

1)寫出表格中ab,c的值;

2)分別運(yùn)用表中的四個(gè)統(tǒng)計(jì)量,簡要分析這兩名隊(duì)員的射擊訓(xùn)練成績.若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊(duì)員.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,BP⊙O的弦,弦CD⊥AB于點(diǎn)F,交BP于點(diǎn)G,ECD的延長線上,EP=EG,

1)求證:直線EP⊙O的切線;

2)點(diǎn)P在劣弧AC上運(yùn)動(dòng),其他條件不變,若BG2=BFBO.試證明BG=PG;

3)在滿足(2)的條件下,已知⊙O的半徑為3,sinB=.求弦CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初二數(shù)學(xué)興趣小組活動(dòng)時(shí),碰到這樣一道題:

“已知正方形,點(diǎn)分別在邊上,若,則”.

經(jīng)過思考,大家給出了以下兩個(gè)方案:

(甲)過點(diǎn)于點(diǎn),過點(diǎn)于點(diǎn);

(乙)過點(diǎn)于點(diǎn),作的延長線于點(diǎn);同學(xué)們順利地解決了該題后,大家琢磨著想改變問題的條件,作更多的探索.

(1)對小杰遇到的問題,請?jiān)诩、乙兩個(gè)方案中任選一個(gè),加以證明(如圖1);

1 2

(2)如果把條件中的“”改為“的夾角為”,并假設(shè)正方形的邊長為l,的長為(如圖2),試求的長度.

查看答案和解析>>

同步練習(xí)冊答案