【題目】如圖,點(diǎn)B(a,b)在第一象限,過B作BA⊥y軸于A,過B作BC⊥x軸于C,且實(shí)數(shù)a、b滿足(a-b-2)2+|2a+b-10|≤0,含45角的Rt△DEF的一條直角邊DF與x軸重合,DE⊥x軸于D,點(diǎn)F與坐標(biāo)原點(diǎn)重合,DE=DF=3.△DEF從某時(shí)刻開始沿著坐標(biāo)軸以1個(gè)單位長度每秒的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)求點(diǎn)B的坐標(biāo);
(2)若△DEF沿著y軸負(fù)方向運(yùn)動(dòng),連接AE,EG平分∠AEF,EH平分∠AED,當(dāng)EG∥DF時(shí),求∠HEF的度數(shù);
(3)若△DEF沿著x軸正方向運(yùn)動(dòng),在運(yùn)動(dòng)過程中,記△AEF與長方形OABC重疊部分的面積為S,當(dāng)0<t≤4,S=時(shí),請你求出運(yùn)動(dòng)時(shí)間t.
【答案】(1)B(4,2);(2)∠HEF==22.5°;(3)t=1或4s.
【解析】
(1)利用非負(fù)數(shù)的性質(zhì)即可解決問題;
(2)當(dāng)EG∥DF時(shí),只要證明∠AWED=135°,即可解決問題;
(3)分兩種情形①如圖2中,當(dāng)0<t<2時(shí),重疊部分是△APF,S=(2-t)t=t-t2,②如圖3中,當(dāng)2<t≤4時(shí),重疊部分是△PAF,S=(t-2)2=t-2,分別構(gòu)建方程即可解決問題;
解:(1)∵(a-b-2)2+|2a+b-10|≤0,
又∵(a-b-2)2≥0,|2a+b-10|≥0,
∴,
解得,
∴B(4,2).
(2)如圖1中,設(shè)EG交y軸于N.
當(dāng)EG∥DF時(shí),∠NEF=∠EFD=45°,
∵∠AEF=90°,
∴∠AEN=45°,
∵DE∥FN,EN∥DF,
∴四邊形DENF是平行四邊形,
∵∠EDF=90°,DE=DF,
∴四邊形DENF是正方形,
∴∠DEN=90°,
∴∠AED=135°,
∵EH平分∠AED,
∴∠DEH=×135°=67.5°,
∵∠DEF=45°,
∴∠HEF=∠DEH-∠DEF=22.5°.
(3)①如圖2中,當(dāng)0<t<2時(shí),重疊部分是△APF,S=(2-t)t=t-t2,
由題意:t-t2=t,
解得t=1,.
②如圖3中,當(dāng)2<t≤4時(shí),重疊部分是△PAF,S=(t-2)2=t-2,
由題意:t-2=t,解得t=4,
綜上所述,當(dāng)t=1或4s時(shí),滿足條件,S=t.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+bx﹣3(b是常數(shù))經(jīng)過點(diǎn)A(﹣1,0).
(1)求該拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)P(m,t)為拋物線上的一個(gè)動(dòng)點(diǎn),P關(guān)于原點(diǎn)的對稱點(diǎn)為P'.
① 當(dāng)點(diǎn)P' 落在該拋物線上時(shí),求m的值;
② 當(dāng)點(diǎn)P' 落在第二象限內(nèi),P'A2取得最小值時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是
A. “明天降雨的概率是80%”表示明天有80%的時(shí)間都在降雨
B. “拋一枚硬幣正面朝上的概率為”表示每拋2次就有一次正面朝上
C. “彩票中獎(jiǎng)的概率為1%”表示買100張彩票肯定會(huì)中獎(jiǎng)
D. “拋一枚正方體骰子,朝上的點(diǎn)數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點(diǎn)數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在附近
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與坐標(biāo)軸分別交于點(diǎn),與直線交于點(diǎn)是線段上的動(dòng)點(diǎn),連接,若是等腰三角形,則的長為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售出2輛A型車和1輛B型車,銷售額為62萬元.
(1)求每輛A型車和B型車的售價(jià)各為多少萬元?
(2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6輛,且A型號車不少于2輛,購車費(fèi)不少于130萬元,則有哪幾種購車方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,兩個(gè)全等的△ABC和△DEF中,∠ACB=∠DFE=90°,AB=DE,其中點(diǎn)B和點(diǎn)D重合,點(diǎn)F在BC上,將△DEF沿射線BC平移,設(shè)平移的距離為x,平移后的圖形與△ABC重合部分的面積為y,y關(guān)于x的函數(shù)圖象如圖2所示(其中0≤x≤m,m<x≤3,3<x≤4時(shí),函數(shù)的解析式不同)
(1)填空:BC的長為_____;
(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績分別被制成下列兩個(gè)統(tǒng)計(jì)圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績/環(huán) | 中位數(shù)/環(huán) | 眾數(shù)/環(huán) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)寫出表格中a,b,c的值;
(2)分別運(yùn)用表中的四個(gè)統(tǒng)計(jì)量,簡要分析這兩名隊(duì)員的射擊訓(xùn)練成績.若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊(duì)員.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,BP是⊙O的弦,弦CD⊥AB于點(diǎn)F,交BP于點(diǎn)G,E在CD的延長線上,EP=EG,
(1)求證:直線EP為⊙O的切線;
(2)點(diǎn)P在劣弧AC上運(yùn)動(dòng),其他條件不變,若BG2=BFBO.試證明BG=PG;
(3)在滿足(2)的條件下,已知⊙O的半徑為3,sinB=.求弦CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初二數(shù)學(xué)興趣小組活動(dòng)時(shí),碰到這樣一道題:
“已知正方形,點(diǎn)分別在邊上,若,則”.
經(jīng)過思考,大家給出了以下兩個(gè)方案:
(甲)過點(diǎn)作交于點(diǎn),過點(diǎn)作交于點(diǎn);
(乙)過點(diǎn)作交于點(diǎn),作交的延長線于點(diǎn);同學(xué)們順利地解決了該題后,大家琢磨著想改變問題的條件,作更多的探索.
(1)對小杰遇到的問題,請?jiān)诩、乙兩個(gè)方案中任選一個(gè),加以證明(如圖1);
圖1 圖2
(2)如果把條件中的“”改為“與的夾角為”,并假設(shè)正方形的邊長為l,的長為(如圖2),試求的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com