【題目】為推廣陽光體育“大課間”活動,某中學(xué)決定在學(xué)生中開設(shè)A:實心球,B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動項目,為了了解學(xué)生對四種項目的喜歡情況,隨機抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:
(1)在這項調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)請計算喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補充完整;
(3)若調(diào)查到喜歡“跳繩”的4名學(xué)生中有2名男生,2名女生.現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.
【答案】
(1)解:15÷10%=150(名),
答;在這項調(diào)查中,共調(diào)查了150名學(xué)生
(2)解:本項調(diào)查中喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù)=150﹣15﹣60﹣30=45(人),
它所占百分比= ×100%=30%,
畫圖如下:
(3)解:畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中相同性別的學(xué)生的結(jié)果數(shù)為4,
所以相同性別的學(xué)生的概率= =
【解析】(1)用A類人數(shù)除以它所占百分比即可得到調(diào)查的總?cè)藬?shù);(2)用總?cè)藬?shù)分別減去A、C、D類人數(shù)即可得到B類人數(shù),再計算B類所占百分比,然后補全統(tǒng)計圖;(3)用A表示男生,B表示女生,先畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出到同性別學(xué)生的結(jié)果數(shù),然后根據(jù)概率公式求解.
【考點精析】認(rèn)真審題,首先需要了解扇形統(tǒng)計圖(能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況),還要掌握條形統(tǒng)計圖(能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小紅用一張長方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB為8cm,長BC為10cm.當(dāng)小紅折疊時,頂點D落在BC邊上的點F處(折痕為AE).此時EC有多長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在直角坐標(biāo)系中,有A(0,3),B(2,1),C(﹣3,﹣3)三點.
(1)請在平面直角坐標(biāo)系中描出各點,并畫出三角形ABC;
(2)三角形ABC的面積是 ;(直接寫出結(jié)果)
(3)設(shè)BC交y軸于點P,試求P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC內(nèi)接于⊙O,過點A作直線EF.
(1)如圖①,AB為直徑,要使EF為⊙O的切線,還需添加的條件是(只需寫出三種情況): ①;②;③ .
(2)如圖②,AB是非直徑的弦,∠CAE=∠B,求證:EF是⊙O的切線.
(3)如圖③,AB是非直徑的弦,∠CAE=∠ABC,EF還是⊙O的切線嗎?若是,請說明理由;若不是,請解釋原因.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,直線y=x+3交x軸于A點,交y軸于B點,過A、B兩點的拋物線y=﹣x2+bx+c交x軸于另一點C,點D是拋物線的頂點.
(1)求此拋物線的解析式;
(2)點P是直線AB上方的拋物線上一點,(不與點A、B重合),過點P作x軸的垂線交x軸于點H,交直線AB于點F,作PG⊥AB于點G.求出△PFG的周長最大值;
(3)在拋物線y=﹣x2+bx+c上是否存在除點D以外的點M,使得△ABM與△ABD的面積相等?若存在,請求出此時點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王在解關(guān)于x的方程3a-2x=15時,誤將-2x看作2x,得方程的解x=3,
(1)求a的值;
(2)求此方程正確的解;
(3)若當(dāng)y=a時,代數(shù)式的值為5,求當(dāng)y=-a時,代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的,連接BE、CF相交于點D.
(1)求證:BE=CF;
(2)當(dāng)四邊形ACDE為菱形時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)請寫出△ABC各點的坐標(biāo).
(2)求出△ABC的面積.
(3)若把△ABC向上平移3個單位,再向右平移2個單位得△A1B1C1,在圖中畫出△A1B1C1的位置,并寫出點A1、B1、C1的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com