【題目】如圖,反比例函數(shù)的圖像與一次函數(shù)的圖像交于點,點的橫坐標是,點是第一象限內(nèi)反比例函數(shù)圖像上的動點,且在直線的上方.
(1)若點的坐標是,則 , ;
(2)設(shè)直線與軸分別交于點,求證:是等腰三角形;
(3)設(shè)點是反比例函數(shù)圖像位于之間的動點(與點不重合),連接,比較與的大小,并說明理由.
【答案】(1), .(2)詳見解析;(3),理由詳見解析.
【解析】
(1)由P點坐標可直接求得k的值,過P、B兩點,構(gòu)造矩形,利用面積的和差可求得△PBO的面積,利用對稱,則可求得△PAB的面積;
(2)可設(shè)出P點坐標,表示出直線PA、PB的解析式,則可表示出M、N的坐標,作PG⊥x軸于點G,可求得MG=NG,即G為MN的中點,則可證得結(jié)論;
(3)連接QA交x軸于點M′,連接QB并延長交x軸于點N′,利用(2)的結(jié)論可求得∠MM′A=∠QN′O,結(jié)合(2)可得到∠PMN=∠PNM,利用外角的性質(zhì)及對頂角進一步可求得∠PAQ=∠PBQ.
(1)∵點P(1,4)在反比例函數(shù)圖象上,
∴k=4×1=4,
∵B點橫坐標為4,
∴B(4,1),
連接OP,過P作x軸的平行線,交y軸于點P′,過B作y軸的平行線,交x軸于點B′,兩線交于點D,如圖1,
則D(4,4),
∴PP′=1,P′O=4,OB′=4,BB′=1,
∴BD=4-1=3,PD=4-1=3,
∴S△POB=S矩形OB′DP′-S△PP′O-S△BB′O-S△BDP=16-2-2-4.5=7.5,
∵A、B關(guān)于原點對稱,
∴OA=OB,
∴S△PAO=S△PBO,
∴S△PAB=2S△PBO=15;
(2)∵點P是第一象限內(nèi)反比例函數(shù)圖象上的動點,且在直線AB的上方,
∴可設(shè)點P坐標為(m,),且可知A(-4,-1),
設(shè)直線PA解析式為y=k′x+b,
把A、P坐標代入可得,解得,
∴直線PA解析式為,令y=0可求得x=m-4,
∴M(m-4,0),
同理可求得直線PB解析式為,令y=0可求得x=m+4,
∴N(m+4,0),
作PG⊥x軸于點G,如圖2,則G(m,0),
∴MG=m-(m-4)=4,NG=m+4-m=4,
∴MG=NG,即G為MN中點,
∴PG垂直平分MN,
∴PM=PN,即△PMN是等腰三角形;
(3)∠PAQ=∠PBQ,理由如下:
連接QA交x軸于M′,連接QB并延長交x軸于點N′,如圖3,
由(2)可得PM′=PN′,即∠QM′O=∠QN′O,
∴∠MM′A=∠QN′O,
由(2)知∠PMN=∠PNM,
∴∠PMN-∠MM′A=∠PNM-∠QN′O,
∴∠PAQ=∠NBN′,
又∠NBN′=∠PBQ,
∴∠PAQ=∠PBQ.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為4.
(1)當m=4,n=20時.
①若點P的縱坐標為2,求直線AB的函數(shù)表達式.
②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.
(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形的邊長為是邊的中點,是邊上的一個動點,將線段繞著逆時針旋轉(zhuǎn),得到,連接,則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地區(qū)在一次九年級數(shù)學做了檢測中,有一道滿分8分的解答題,按評分標準,所有考生的得分只有四種:0分,3分,5分,8分.老師為了了解學生的得分情況與題目的難易情況,從全區(qū)4500名考生的試卷中隨機抽取一部分,通過分析與整理,繪制了如下兩幅圖不完整的統(tǒng)計圖.
請根據(jù)以上信息解答下列問題:
(1)填空:a= ,b= ,并把條形統(tǒng)計圖補全;
(2)請估計該地區(qū)此題得滿分(即8分)的學生人數(shù);
(3)已知難度系數(shù)的計算公式為L=,其中L為難度系數(shù),X為樣本平均得分,W為試題滿分值.一般來說,根據(jù)試題的難度系數(shù)可將試題分為以下三類:當0<L≤0.4時,此題為難題;當0.4<L≤0.7時,此題為中等難度試題;當0.7<L<1時,此題為容易題.試問此題對于該地區(qū)的九年級學生來說屬于哪一類?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用同樣規(guī)格的黑白兩色正方形瓷磚鋪設(shè)長方形地面,觀察下列圖形,探究并解答問題:
(1)在第4個圖中,共有白色瓷磚______塊;在第個圖中,共有白色瓷磚_____塊;
(2)試用含的代數(shù)式表示在第個圖中共有瓷磚的塊數(shù);
(3)如果每塊黑瓷磚35元,每塊白瓷磚50元,當時,求鋪設(shè)長方形地面共需花多少錢購買瓷磚?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當D為AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于任意四個有理數(shù)a,b,c,d,可以組成兩個有理數(shù)對(a,b)與(c,d).我們規(guī)定:
(a,b)★(c,d)=bc-ad.
例如:(1,2)★(3,4)=2×3-1×4=2.
根據(jù)上述規(guī)定解決下列問題:
(1)有理數(shù)對(2,-3)★(3,-2)=_______;
(2)若有理數(shù)對(-3,2x-1)★(1,x+1)=7,則x=_______;
(3)當滿足等式(-3,2x-1)★(k,x+k)=5+2k的x是整數(shù)時,求整數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:
小紅同學在學習過程中遇到這樣一道計算題“計算4×2.112-4×2.11×2.22+2.222”,她覺得太麻煩,估計應該有可以簡化計算的方法,就去請教崔老師.崔老師說:你完成下面的問題后就可能知道該如何簡化計算啦!
獲取新知:
請你和小紅一起完成崔老師提供的問題:
(1)填寫下表:
x=-1,y=1 | x=1,y=0 | x=3,y=2 | x=2,y=-1 | x=2,y=3 | |
A=2x-y | -3 | 2 | 4 | 5 | 1 |
B=4x2-4xy+y2 | 9 | 4 | 16 |
(2)觀察表格,你發(fā)現(xiàn)A與B有什么關(guān)系?
解決問題:
(3)請利用A與B之間的關(guān)系計算:4×2.112-4×2.11×2.22+2.222.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,AB=BC=5,∠B=90°,將一塊等腰直角三角板的直角頂點O放在斜邊AC上,三角板的兩直角邊分別交直線AB、BC于E、F兩點.
(1)如圖①,若O為AC的中點,點E、F分別在邊AB、BC上.
①當△OFC是等腰直角三角形時,∠FOC= ;
②求證:OE=OF;
(2)如圖②,若AO:AC=1:4時,OE和OF有怎樣的數(shù)量關(guān)系?證明你發(fā)現(xiàn)的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com