【題目】如圖,AB是圓O的直徑,AC是圓O的弦,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,若∠A=∠D,CD=2.
(1)求∠A的度數(shù).
(2)求圖中陰影部分的面積.
【答案】(1) ∠A=30°;(2)
【解析】
(1)連接OC,由過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D
再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.
(2)先求∠COD度數(shù)及OC長(zhǎng)度,即可求出圖中陰影部分的面積.
解:(1)連結(jié)OC
∵CD為⊙O的切線
∴OC⊥CD
∴∠OCD=90°
又∵OA=OC
∴∠A=∠ACO
又∵∠A=∠D
∴∠A=∠ACO=∠D
而∠A+∠ACD+∠D=180°﹣90°=90°
∴∠A=30°
(2)由(1)知:∠D=∠A=30°
∴∠COD=60°
又∵CD=2
∴OC=2
∴S陰影=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的平分線與的垂直平分線相交于點(diǎn),于點(diǎn),,,則的長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象上,點(diǎn)A是該圖象第一象限分支上的動(dòng)點(diǎn),連結(jié)AO并延長(zhǎng)交另一支于點(diǎn)B,以AB為斜邊作等腰直角△ABC,頂點(diǎn)C在第四象限,AC與x軸交于點(diǎn)P,連結(jié)BP,在點(diǎn)A運(yùn)動(dòng)過(guò)程中,當(dāng)BP平分∠ABC時(shí),點(diǎn)A的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過(guò)點(diǎn)A作⊙O的切線交OC的延長(zhǎng)線于點(diǎn)D,交BC的延長(zhǎng)線于點(diǎn)E.
(1)求證:∠DAC=∠DCE;
(2)若AB=2,sin∠D=,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=k1x+b與x軸、y軸相交于P、Q兩點(diǎn),與y=的圖象相交于A(﹣2,m)、B(1,n)兩點(diǎn),連接OA、OB,給出下列結(jié)論:①k1k2<0;②m+n=0;③S△AOP=S△BOQ;④不等式k1x+b>的解集是x<﹣2或0<x<1,其中正確的結(jié)論的序號(hào)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0),點(diǎn)B(0,2),點(diǎn)O(0,0).△AOB繞著O順時(shí)針旋轉(zhuǎn),得△A′OB′,點(diǎn)A、B旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A′、B′,記旋轉(zhuǎn)角為α.
(I)如圖1,若α=30°,求點(diǎn)B′的坐標(biāo);
(Ⅱ)如圖2,若0°<α<90°,設(shè)直線AA′和直線BB′交于點(diǎn)P,求證:AA′⊥BB′;
(Ⅲ)若0°<α<360°,求(Ⅱ)中的點(diǎn)P縱坐標(biāo)的最小值(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在1、2、3、4、5這五個(gè)數(shù)中,先任意取一個(gè)數(shù)a,然后在余下的數(shù)中任意取出一個(gè)數(shù)b,組成一個(gè)點(diǎn)(a,b).求組成的點(diǎn)(a,b)恰好橫坐標(biāo)為偶數(shù)且縱坐標(biāo)為奇數(shù)的概率.(請(qǐng)用“畫樹(shù)狀圖”或“列表”等方法寫出分析過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠B=60°.若點(diǎn)D為AB的中點(diǎn),P為邊AB上一點(diǎn),且∠CDP=90°,將∠CDP繞點(diǎn)D順時(shí)針?lè)较蛐D(zhuǎn)(0°<<60°),角的兩邊分別與邊AC、BC相交于M、N兩點(diǎn),則=_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為12的正方形ABCD沿其對(duì)角線AC剪開(kāi),再把△ABC沿著AD方向平移,得到△A′B′C′,當(dāng)兩個(gè)三角形重疊部分的面積為32時(shí),它移動(dòng)的距離AA′等于________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com