【題目】如圖,在中,,,點(diǎn)在線段上運(yùn)動(dòng)(不與、重合),連接,作,交線段于.
(1)當(dāng)時(shí),______________;點(diǎn)從向運(yùn)動(dòng)時(shí),逐漸變____________(填“大”或“小”);
(2)當(dāng)時(shí),求證:,請(qǐng)說明理由;
(3)在點(diǎn)的運(yùn)動(dòng)過程中,的形狀也在改變,判斷當(dāng)等于多少度時(shí),是等腰三角形.
【答案】(1)25°;。唬2)見解析;(3)當(dāng)∠BDA的度數(shù)為80°或110°時(shí),△ADE是等腰三角形.
【解析】
(1)利用三角形內(nèi)角和定理,即可求出;然后根據(jù)∠BAD的變化情況,即可判斷的變化情況;
(2)利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AAS即可得出△ABD≌△DCE;
(3)根據(jù)等腰三角形的腰的情況分類討論,再利用等腰三角形的性質(zhì)和三角形的外角即可分別求出∠BDA.
解:∵在△BAD中,∠B=40°,∠BDA=115°,
∴∠BAD=180°﹣∠B﹣∠BDA=25°;
∠BAD+∠BDA=180°﹣∠B=140°
由圖可知:點(diǎn)從向運(yùn)動(dòng)時(shí),∠BAD逐漸變大,則逐漸變。
故答案為:25°;小;
(2)∵∠B=∠C=40°,
∴∠DEC+∠EDC=180°﹣∠C=140°,
又∵∠ADE=40°,
∴∠ADB+∠EDC=180°﹣∠ADE =140°,
∴∠ADB=∠DEC,
∵,
∴
在△ABD和△DCE中,
∴△ABD≌△DCE(AAS).
(3)當(dāng)△ADE是等腰三角形時(shí),∠BDA的度數(shù)為80°或110°,
①當(dāng)ED=EA時(shí),
∴∠DAE=∠EDA=40°,
∴∠BDA=∠C+DAE=80°;
②當(dāng)DA=DE時(shí),
∴∠DAE=∠DEA=(180°﹣∠ADE)=70°,
∴∠BDA=∠C+DAE=110°,
③當(dāng)AD=AE時(shí),
∠ADE=∠AED=40°
∵∠C=40°
∠AED是△EDC的外角
∴∠AED>∠C,與∠AED=40°矛盾
所以此時(shí)不成立;
綜上所述:當(dāng)∠BDA的度數(shù)為80°或110°時(shí),△ADE是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,是的兩條角平分線,且,交于點(diǎn).
(1)如圖1,用等式表示,,這三條線段之間的數(shù)量關(guān)系,并證明你的結(jié)論;
小東通過觀察、實(shí)驗(yàn),提出猜想:.他發(fā)現(xiàn)先在上截取,使,連接,再利用三角形全等的判定和性質(zhì)證明即可.
①下面是小東證明該猜想的部分思路,請(qǐng)補(bǔ)充完整:
ⅰ)在上截取,使,連接,則可以證明與 全等,判定它們?nèi)鹊囊罁?jù)是 ;
ⅱ)由,,是的兩條角平分線,可以得出 °;
②請(qǐng)直接利用ⅰ),ⅱ)已得到的結(jié)論,完成證明猜想的過程.
(2)如圖2,若 ,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:為的直徑,為延長線上的任意一點(diǎn),過點(diǎn)作的切線,切點(diǎn)為,的平分線與交于點(diǎn).
(1)如圖,若恰好等于,求的度數(shù);
(2)如圖,若點(diǎn)位于中不同的位置,的結(jié)論是否仍然成立?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)A(3,0),B(2,﹣3),并且以x=1為對(duì)稱軸.
(1)求此函數(shù)的解析式;
(2)作出二次函數(shù)的大致圖象;
(3)在對(duì)稱軸x=1上是否存在一點(diǎn)P,使△PAB中PA=PB?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角中, ,是斜邊的中點(diǎn),點(diǎn)、分別在直角邊、上,且,交于點(diǎn).則下列結(jié)論:①圖形中全等的三角形只有兩對(duì);②的面積等于四邊形面積的2倍;③;④.其中正確的結(jié)論有_______________________________(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OP平分,,,垂足分別為A,B.下列結(jié)論中,一定成立的是_________.(填序號(hào)) ①;②平分;③ ④垂直平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是8×8的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:
(1)在網(wǎng)格中建立平面直角坐標(biāo)系,使點(diǎn)A的坐標(biāo)為(﹣2,4),點(diǎn)B的坐標(biāo)為(﹣4,2);
(2)在第二象限內(nèi)的格點(diǎn)上畫一點(diǎn)C,連接AC,BC,使△BC成為以AB為底的等腰三角形,且腰長是無理數(shù).
①此時(shí)點(diǎn)C的坐標(biāo)為 ,△ABC的周長為 (結(jié)果保留根號(hào));
②畫出△ABC關(guān)于y軸對(duì)稱的△A′B'C′(點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別A',B',C′),并寫出A′,B′,C′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,MN在邊AB上運(yùn)動(dòng),MN=3,AP=2,BQ=5,PM+MN+NQ最小值是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com