【題目】如圖,在中,,,點在線段上運動(不與、重合),連接,作,交線段于.
(1)當時,______________;點從向運動時,逐漸變____________(填“大”或“小”);
(2)當時,求證:,請說明理由;
(3)在點的運動過程中,的形狀也在改變,判斷當等于多少度時,是等腰三角形.
【答案】(1)25°;;(2)見解析;(3)當∠BDA的度數(shù)為80°或110°時,△ADE是等腰三角形.
【解析】
(1)利用三角形內(nèi)角和定理,即可求出;然后根據(jù)∠BAD的變化情況,即可判斷的變化情況;
(2)利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AAS即可得出△ABD≌△DCE;
(3)根據(jù)等腰三角形的腰的情況分類討論,再利用等腰三角形的性質(zhì)和三角形的外角即可分別求出∠BDA.
解:∵在△BAD中,∠B=40°,∠BDA=115°,
∴∠BAD=180°﹣∠B﹣∠BDA=25°;
∠BAD+∠BDA=180°﹣∠B=140°
由圖可知:點從向運動時,∠BAD逐漸變大,則逐漸變。
故答案為:25°;;
(2)∵∠B=∠C=40°,
∴∠DEC+∠EDC=180°﹣∠C=140°,
又∵∠ADE=40°,
∴∠ADB+∠EDC=180°﹣∠ADE =140°,
∴∠ADB=∠DEC,
∵,
∴
在△ABD和△DCE中,
∴△ABD≌△DCE(AAS).
(3)當△ADE是等腰三角形時,∠BDA的度數(shù)為80°或110°,
①當ED=EA時,
∴∠DAE=∠EDA=40°,
∴∠BDA=∠C+DAE=80°;
②當DA=DE時,
∴∠DAE=∠DEA=(180°﹣∠ADE)=70°,
∴∠BDA=∠C+DAE=110°,
③當AD=AE時,
∠ADE=∠AED=40°
∵∠C=40°
∠AED是△EDC的外角
∴∠AED>∠C,與∠AED=40°矛盾
所以此時不成立;
綜上所述:當∠BDA的度數(shù)為80°或110°時,△ADE是等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】在中,,,是的兩條角平分線,且,交于點.
(1)如圖1,用等式表示,,這三條線段之間的數(shù)量關系,并證明你的結(jié)論;
小東通過觀察、實驗,提出猜想:.他發(fā)現(xiàn)先在上截取,使,連接,再利用三角形全等的判定和性質(zhì)證明即可.
①下面是小東證明該猜想的部分思路,請補充完整:
ⅰ)在上截取,使,連接,則可以證明與 全等,判定它們?nèi)鹊囊罁?jù)是 ;
ⅱ)由,,是的兩條角平分線,可以得出 °;
②請直接利用ⅰ),ⅱ)已得到的結(jié)論,完成證明猜想的過程.
(2)如圖2,若 ,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:為的直徑,為延長線上的任意一點,過點作的切線,切點為,的平分線與交于點.
(1)如圖,若恰好等于,求的度數(shù);
(2)如圖,若點位于中不同的位置,的結(jié)論是否仍然成立?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點A(3,0),B(2,﹣3),并且以x=1為對稱軸.
(1)求此函數(shù)的解析式;
(2)作出二次函數(shù)的大致圖象;
(3)在對稱軸x=1上是否存在一點P,使△PAB中PA=PB?若存在,求出P點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰直角中, ,是斜邊的中點,點、分別在直角邊、上,且,交于點.則下列結(jié)論:①圖形中全等的三角形只有兩對;②的面積等于四邊形面積的2倍;③;④.其中正確的結(jié)論有_______________________________(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OP平分,,,垂足分別為A,B.下列結(jié)論中,一定成立的是_________.(填序號) ①;②平分;③ ④垂直平分
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是8×8的正方形網(wǎng)格,請在所給網(wǎng)格中按下列要求操作:
(1)在網(wǎng)格中建立平面直角坐標系,使點A的坐標為(﹣2,4),點B的坐標為(﹣4,2);
(2)在第二象限內(nèi)的格點上畫一點C,連接AC,BC,使△BC成為以AB為底的等腰三角形,且腰長是無理數(shù).
①此時點C的坐標為 ,△ABC的周長為 (結(jié)果保留根號);
②畫出△ABC關于y軸對稱的△A′B'C′(點A,B,C的對應點分別A',B',C′),并寫出A′,B′,C′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一直角坐標系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com