【題目】如圖,在O中,AB是直徑,AD是弦,ADE = 60°,C = 30°

判斷直線CD是否是O的切線,并說(shuō)明理由;

CD = ,求BC的長(zhǎng).

【答案】(1)CD是⊙O的切線

證明:如圖,OD

∵∠ADE=60°,∠C=30°,∴∠A=30°

∵OA=OD∴∠ODA=∠A=30°

∴∠ODE=∠ODA+∠ADE=30°+60°=90°,∴OD⊥CD

∴CD是⊙O的切線

(2)解:在Rt△ODC中,∠ODC=90°, ∠C=30°, CD=

∵tanC=

∴OD=CD·tanC=×=3.

∴OC=2OD =6

∵OB=OD=3,∴BC=OC-OB=6-3=3

【解析】(1)根據(jù)切線的判定定理,連接OD,只需證明OD⊥CD,根據(jù)三角形的外角的性質(zhì)得∠A=30°,再根據(jù)等邊對(duì)等角得∠ADO=∠A,從而證明結(jié)論;

(2)在30°的直角三角形OCD中,求得OD,OC的長(zhǎng),則BC=OC-OB.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,公路為東西走向,在點(diǎn)北偏東方向上,距離千米處是村莊,在點(diǎn)北偏東方向上,距離千米處是村莊;要在公路旁修建一個(gè)土特產(chǎn)收購(gòu)站(取點(diǎn)),使得兩村莊到站的距離之和最短,請(qǐng)?jiān)趫D中作出的位置(不寫(xiě)作法)并計(jì)算:

1,兩村莊之間的距離;

2、距離之和的最小值.(參考數(shù)據(jù):sin36.5°0.6cos36.5°0.8,tan36.5°0.75計(jì)算結(jié)果保留根號(hào).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,E,F分別為BCAB中點(diǎn),連接FC,AE,且AEFC交于點(diǎn)G,AE的延長(zhǎng)線與DC的延長(zhǎng)線交于點(diǎn)N

1)求證:△ABE≌△NCE;

2)若AB=3n,FB=GE,試用含n的式子表示線段AN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校要開(kāi)展校園文化藝術(shù)節(jié)活動(dòng),為了合理編排節(jié)目,對(duì)學(xué)生最喜愛(ài)的歌曲、舞蹈、小品、相聲四類節(jié)目進(jìn)行了一次隨機(jī)抽樣調(diào)查(每名學(xué)生必須選擇且只能選擇一類),并將調(diào)查結(jié)果繪制成如下不完整統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)圖中信息,回答下列問(wèn)題:

(1)本次共調(diào)查了  名學(xué)生.

(2)在扇形統(tǒng)計(jì)圖中,歌曲所在扇形的圓心角等于  度.

(3)補(bǔ)全條形統(tǒng)計(jì)圖(標(biāo)注頻數(shù)).

(4)根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中最喜愛(ài)小品的人數(shù)為  人.

(5)九年一班和九年二班各有2名學(xué)生擅長(zhǎng)舞蹈,學(xué)校準(zhǔn)備從這4名學(xué)生中隨機(jī)抽取2名學(xué)生參加舞蹈節(jié)目的編排,那么抽取的2名學(xué)生恰好來(lái)自同一個(gè)班級(jí)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線上部分點(diǎn)的橫坐標(biāo),縱坐標(biāo)的對(duì)應(yīng)值如下表:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

小聰觀察上表,得出下面結(jié)論:①拋物線與x軸的一個(gè)交點(diǎn)為(3,0); ②函數(shù)的最大值為6;③拋物線的對(duì)稱軸是④在對(duì)稱軸左側(cè),yx增大而增大.其中正確有( )

A. ①② B. ①③ C. ①②③ D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠A=60°AB=6厘米,BC=12厘米,點(diǎn)P、Q同時(shí)從 頂點(diǎn)A出發(fā),點(diǎn)P沿A→B→C→D方向以2厘米/秒的速度前進(jìn),點(diǎn)Q沿A→D方向以1厘米/秒的速度前進(jìn),當(dāng)Q到達(dá)點(diǎn)D時(shí),兩個(gè)點(diǎn)隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,PQ經(jīng)過(guò)的路徑與線段PQ圍成的圖形的面積為ycm2),則yx的函數(shù)圖象大致是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A0,6),B6,0),C-2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).

1)求拋物線的解析式;

2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),PAB的面積有最大值?

3)過(guò)點(diǎn)Px軸的垂線,交線段AB于點(diǎn)D,再過(guò)點(diǎn)PPEx軸交拋物線于點(diǎn)E,連結(jié)DE,請(qǐng)問(wèn)是否存在點(diǎn)P使PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(3,0)和(2,0)之間,其部分圖象如下圖,則以下結(jié)論:①b2–4ac<0;②a+b+c<0;③c–a=2;④方程ax2+bx+c–2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確結(jié)論的個(gè)數(shù)為( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x1,x2是一元二次方程x23x+10的兩實(shí)數(shù)根,則的值是(  )

A. 7B. 1C. 1D. 7

查看答案和解析>>

同步練習(xí)冊(cè)答案