【題目】我國(guó)古代數(shù)學(xué)的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數(shù)學(xué)家楊輝所著的《詳解九章算術(shù)》一書中,用如圖的三角形解釋二項(xiàng)式(a+b)n的展開式的各項(xiàng)系數(shù),此三角形稱為“楊輝三角”.
根據(jù)“楊輝三角”請(qǐng)計(jì)算(a+b)10的展開式中第三項(xiàng)的系數(shù)為( 。
A. 2018 B. 2017 C. 55 D. 45
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣1,0),點(diǎn)B(3,0).在第三象限內(nèi)有一點(diǎn)M(﹣2,m).
(1)請(qǐng)用含m的式子表示△ABM的面積;
(2)當(dāng)m=-時(shí),在y軸上有一點(diǎn)P,使△BMP的面積與△ABM的面積相等,請(qǐng)求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提高三亞市初級(jí)中學(xué)教師業(yè)務(wù)水平,相關(guān)單位舉辦了首屆“三亞市敏特杯數(shù)學(xué)命題大賽”,在眾多自命題題目中共有5道題目進(jìn)入專家組評(píng)審,將前5天的投票數(shù)據(jù)整理成如下不完整的統(tǒng)計(jì)圖表:
票數(shù)條形統(tǒng)計(jì)圖
題目編號(hào) | 人數(shù) | 百分比 |
1 | 40 | 10% |
2 | 120 | m% |
3 | 88 | 22% |
4 | a | 20% |
5 | 72 | 18% |
合計(jì) | 400 | 1 |
請(qǐng)根據(jù)圖表提供的信息,解答下面問題:
(1)票數(shù)統(tǒng)計(jì)表中的a= ,m= .
(2)請(qǐng)把票數(shù)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若繪制“票數(shù)扇形統(tǒng)計(jì)圖”編號(hào)是“4”的題目所對(duì)應(yīng)扇形的圓心角是 度;
(4)至本次投票結(jié)束,總票數(shù)共有1200票,請(qǐng)估計(jì)編號(hào)是“3”的題目約獲得 票.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(a,a+5)和點(diǎn)B(6,a+1)都在雙曲線y=(k<0)上.
(1)求k的值;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠AOB內(nèi)一點(diǎn)P,P1,P2分別P是關(guān)于OA、OB的對(duì)稱點(diǎn),P1P2交OA于M,交OB于N,若P1P2=6cm,則△PMN的周長(zhǎng)是( )
A.3cmB.4cmC.5cmD.6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠ACB=90°,AC=BC,過點(diǎn)C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N.
(1)求證:MN=AM+BN.
(2)若過點(diǎn)C在△ABC內(nèi)作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關(guān)系?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年暑假期間,某學(xué)校計(jì)劃租用8輛客車送280名師生參加社會(huì)實(shí)踐活動(dòng),現(xiàn)有甲、乙兩種客車,它們的載客量和租金如表,設(shè)租用甲種客車x輛,租車總費(fèi)用為w元.
甲種客車 | 乙種客車 | |
載客量(人/輛) | 30 | 40 |
租金(元/輛) | 270 | 320 |
(1)求出w(元)與x(輛)之間函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)選擇怎樣的租車方案所需的費(fèi)用最低?最低費(fèi)用多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,E為邊BC上的點(diǎn),且AD⊥BE,D為線段BE的中點(diǎn),過點(diǎn)E作EF⊥AE,過點(diǎn)A作AF∥BC,且AF、EF相交于點(diǎn)F.
(1)求證:∠EAD=∠BAD;
(2)求證:AC=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點(diǎn)D在邊AB上.
(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;
(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想ED和EB數(shù)量關(guān)系,并加以證明;
(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EH⊥AB于點(diǎn)H,過點(diǎn)E作GE∥AB,交線段AC的延長(zhǎng)線于點(diǎn)G,AG=5CG,BH=3.求CG的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com