【題目】我國古代數(shù)學(xué)的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數(shù)學(xué)家楊輝所著的《詳解九章算術(shù)》一書中,用如圖的三角形解釋二項(xiàng)式(a+b)n的展開式的各項(xiàng)系數(shù),此三角形稱為楊輝三角”.

根據(jù)楊輝三角請計(jì)算(a+b)10的展開式中第三項(xiàng)的系數(shù)為( 。

A. 2018 B. 2017 C. 55 D. 45

【答案】D

【解析】

根據(jù)圖形中的規(guī)律即可求出(a+b10的展開式中第三項(xiàng)的系數(shù)

找規(guī)律發(fā)現(xiàn)(a+b3的第三項(xiàng)系數(shù)為3=1+2

a+b4的第三項(xiàng)系數(shù)為6=1+2+3;

a+b5的第三項(xiàng)系數(shù)為10=1+2+3+4;

不難發(fā)現(xiàn)(a+bn的第三項(xiàng)系數(shù)為1+2+3++n2+n1),a+b10第三項(xiàng)系數(shù)為1+2+3++9=45

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣1,0),點(diǎn)B3,0).在第三象限內(nèi)有一點(diǎn)M(﹣2,m).

(1)請用含m的式子表示ABM的面積;

(2)當(dāng)m-時(shí),在y軸上有一點(diǎn)P,使BMP的面積與ABM的面積相等,請求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提高三亞市初級中學(xué)教師業(yè)務(wù)水平,相關(guān)單位舉辦了首屆三亞市敏特杯數(shù)學(xué)命題大賽,在眾多自命題題目中共有5道題目進(jìn)入專家組評審,將前5天的投票數(shù)據(jù)整理成如下不完整的統(tǒng)計(jì)圖表:

票數(shù)條形統(tǒng)計(jì)圖

題目編號

 人數(shù)

 百分比

 1

40

10%

 2

120

m%

 3

88

22%

 4

a

20%

5

72

18%

合計(jì)

400

1

請根據(jù)圖表提供的信息,解答下面問題:

(1)票數(shù)統(tǒng)計(jì)表中的a=   ,m=   

(2)請把票數(shù)統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若繪制票數(shù)扇形統(tǒng)計(jì)圖編號是“4”的題目所對應(yīng)扇形的圓心角是   度;

(4)至本次投票結(jié)束,總票數(shù)共有1200票,請估計(jì)編號是“3”的題目約獲得   票.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(a,a+5)和點(diǎn)B(6,a+1)都在雙曲線y=(k<0)上.

(1)求k的值;

(2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠AOB內(nèi)一點(diǎn)P,P1P2分別P是關(guān)于OA、OB的對稱點(diǎn),P1P2OAM,交OBN,若P1P26cm,則△PMN的周長是( 。

A.3cmB.4cmC.5cmD.6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在△ABC中,∠ACB=90°,AC=BC,過點(diǎn)C在△ABC外作直線MN,AMMNMBNMNN
1)求證:MN=AM+BN
2)若過點(diǎn)C在△ABC內(nèi)作直線MN,AMMNM,BNMNN,則AM、BNMN之間有什么關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年暑假期間,某學(xué)校計(jì)劃租用8輛客車送280名師生參加社會實(shí)踐活動,現(xiàn)有甲、乙兩種客車,它們的載客量和租金如表,設(shè)租用甲種客車x輛,租車總費(fèi)用為w元.

甲種客車

乙種客車

載客量(人/輛)

30

40

租金(元/輛)

270

320

1)求出w(元)與x(輛)之間函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;

2)選擇怎樣的租車方案所需的費(fèi)用最低?最低費(fèi)用多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,E為邊BC上的點(diǎn),且ADBED為線段BE的中點(diǎn),過點(diǎn)EEFAE,過點(diǎn)AAFBC,且AF、EF相交于點(diǎn)F

1)求證:∠EAD=∠BAD

2)求證:ACEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,ABC=30°,CDE是等邊三角形,點(diǎn)D在邊AB上.

(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;

(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想EDEB數(shù)量關(guān)系,并加以證明;

(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EHAB于點(diǎn)H,過點(diǎn)EGEAB,交線段AC的延長線于點(diǎn)G,AG=5CG,BH=3.求CG的長.

查看答案和解析>>

同步練習(xí)冊答案