【題目】如圖,△ABC和△ADE中,AB=AD,AC=AE, ∠BAC=∠DAE,BC交

DE于點O,∠BAD=a.

(1)求證:∠BOD=a.

(2)若AO平分∠DAC, 求證:AC=AD.

(3)若∠C=30°,OE交AC于F,且△AOF為等腰三角形,則a= .

【答案】(1)證明見解析;(2)證明見解析;(3)40°或20°

【解析】試題分析:(1)根據(jù)全等三角形的判定“SAS”證得△ABC≌△ADE,然后根據(jù)全等的性質,可得∠B=∠D,再根據(jù)三角形的內角和定理得證結論;

(2)過A作AM⊥BC于M,作AN⊥DE于N,由(1)知△ABC≌△ADE,根據(jù)全等三角形的面積相等證得AM=AN,從而AO為∠DAC的平分線,根據(jù)ASA證得△ABO≌△AEO,可得AB=AE,然后得證;

(3)由題意可分為OA=OF和OA=AF兩種情況討論,即可求解.

試題解析:(1)在△ABC和△ADE中,

∴△ABC≌△ADE(SAS)∴∠B=∠D,∴∠BOD=∠BAD=α,

(2)過A作AM⊥BC于M,作AN⊥DE于N,

∵△ABC≌△ADE,SABC=SADE,,BC=DE,AM=AN,

∴AO平分∠BOE,∵AO平分∠DAC,∴∠DAO=∠CAO,∴∠BAO=∠EAO,

在△ABO和△AEO中,

∴△ABO≌△AEO(ASA),

∴AB=AE,∵AB=AD,AC=AE,∴AC=AD,

(3)當AO=AF時,a=40°,

當OA=OF時,a=20°,

故答案為:40°或20°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在下列語句中表述正確的是(
A.延長直線AB
B.延長射線AB
C.作直線AB=BC
D.延長線段AB到C

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,ABC的頂點均在格點上,點B的坐標為(1,0)

(1)畫出ABC關于x軸對稱的A1B1C1;

(2)畫出將ABC繞原點O按逆時針旋轉90°所得的A2B2C2

(3)A1B1C1A2B2C2成軸對稱圖形嗎?若成軸對稱圖形,畫出所有的對稱軸;

(4)A1B1C1A2B2C2成中心對稱圖形嗎?若成中心對稱圖形,寫出所有的對稱中心的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,點E,O,F(xiàn)分別為AB,AC,AD的中點,連接CE,CF,OE,OF.

(1)求證:△BCE≌△DCF;

(2)當AB與BC滿足什么關系時,四邊形AEOF是正方形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A(-3,2)關于x軸的對稱點A的坐標為( )

A. (-3,-2) B. (3,2) C. (3,-2) D. (2,-3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:(x+5)(x﹣1)+(x﹣2)2 , 其中x=﹣2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx與x軸交于O,A(4,0)兩點,點B的坐標為(0,-3).

(1)求拋物線的對稱軸;

(2)已知點P在拋物線的對稱軸上,連接OP,BP. 若要使OP+BP的值最小,求出點P的坐標;

(3)將拋物線在x軸下方的部分沿x軸翻折,其余部分保持不變,得到一個新的圖象. 當直線y=x+m(m≠0)與這個新圖象有兩個公共點時,在反比例函數(shù)y=的圖象中,y的值隨x怎樣變化?判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCDMCD中點AB=8,AD=3

1)求AM的長

2MAB是直角三角形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點A(m,﹣n)在第二象限,則點B(﹣m,|n|)在第_____象限.

查看答案和解析>>

同步練習冊答案