如圖,D、E、F分別在△ABC的邊BC、AB、AC上,且DE∥AF,DE=AF,G在FD的延長線上,DG=DF.試說明AG和ED互相平分.

【答案】分析:由一組對(duì)邊平行且相等求解四邊形AEGD是平行四邊形,即可得出結(jié)論.
解答:證明:∵DE∥AF,且DE=AF,
∴四邊形AEDF是平行四邊形,
∴AE=DF,
又DG=DF,
∴AE=DG,
∴四邊形AEGD是平行四邊形,
∴AG和ED互相平分.
點(diǎn)評(píng):本題主要考查平行四邊形的判定問題,應(yīng)熟練掌握平行四邊形的判定定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在正方形ABCD中,點(diǎn)E、F分別為邊BC、CD的中點(diǎn),AF、DE相交于點(diǎn)G,則可得結(jié)論:①AF=DE,②AF⊥DE(不須證明).
(1)如圖②,若點(diǎn)E、F不是正方形ABCD的邊BC、CD的中點(diǎn),但滿足CE=DF,則上面的結(jié)論①、②是否仍然成立;(請(qǐng)直接回答“成立”或“不成立”)
(2)如圖③,若點(diǎn)E、F分別在正方形ABCD的邊CB的延長線和DC的延長線上,且CE=DF,此時(shí)上面的結(jié)論①、②是否仍然成立?若成立,請(qǐng)寫出證明過程;若不成立,請(qǐng)說明理由.
(3)如圖④,在(2)的基礎(chǔ)上,連接AE和EF,若點(diǎn)M、N、P、Q分別為AE、EF、FD、AD的中點(diǎn),請(qǐng)先判斷四邊形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一種,并寫出證明過程.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)某花木場有一塊形如等腰梯形ABCD的空地(如圖),各邊中點(diǎn)分別為E、F、G、H,測得對(duì)角線AC=5m,若用籬笆圍成四邊形EFGH的場地,則需籬笆總長度為
 
m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖中所有的線段可分別表示為
線段AB,BC,AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,經(jīng)過原點(diǎn)O的⊙C分別與x軸、y軸交于點(diǎn)A、B,P為
OBA
上一點(diǎn).若∠OPA=60°,OA=4
3
,則OB的長為
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長CB交AE于點(diǎn)G,點(diǎn)G在點(diǎn)A,
E之間,連接CE、CF、EF,有下列四個(gè)結(jié)論:
①△CDF≌△EBC;     ②∠CDF=∠EAF;
③△ECF是等邊三角形;  ④CG⊥AE,
請(qǐng)把你認(rèn)為正確的結(jié)論的序號(hào)填在橫線上
①②③
①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案