【題目】如圖,在中,,,,點在邊上,且,點為射線上一動點,連接.將沿直線折疊,使點落在點處,連接,則的面積最小值為(

A.3B.6C.D.12

【答案】B

【解析】

根據(jù)題意可得,點P在以點F為圓心,2為半徑的圓弧上運動,則過點FFDABD,FD與⊙F的交點為P,則此時△APB的面積最小,結合相似三角形的判定與性質以及勾股定理求出此時ABPD的長即可得出結果.

解:根據(jù)折疊可知,FP=FC=2

∴在折疊的過程中,FP的長度不變?yōu)?/span>2,

∴點P在以點F為圓心,2為半徑的圓弧上運動,

則過點FFDABDFD與⊙F的交點為P,則此時△APB的面積最。

RtABC中,根據(jù)勾股定理得,

AB=,

∵∠DAF=CAB,∠ADF=ACB=90°,

∴△ADF∽△ACB

,∴,∴DF=3.2

DP=DF-PF=3.2-2=1.2

∴此時△APB的面積=×AB×DP=×10×1.2=6

即△APB面積的最小值為6

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】鐘南山院士在談到防護新型冠狀病毒肺炎時說:我們需要重視防護,但也不必恐慌,盡量少去人員密集的場所,出門戴口罩,在室內注意通風,勤洗手,多運動,少熬夜.某社區(qū)為了加強社區(qū)居民對新型冠狀病毒肺炎防護知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護知識,并鼓勵社區(qū)居民在線參與作答《2020年新型冠狀病毒防治全國統(tǒng)一考試(全國卷)》試卷(滿分100分),社區(qū)管理員隨機從甲、乙兩個小區(qū)各抽取20名人員的答卷成績,并對他們的成績(單位:分)進行統(tǒng)計、分析,過程如下:

收集數(shù)據(jù)

甲小區(qū):80 85 90 95 90 95 90 65 75 100 90 70 95 90 80 80 90 95 60 100

乙小區(qū):60 80 95 80 90 65 80 85 85 100 80 95 90 80 90 70 80 90 75 100

整理數(shù)據(jù)

成績(分)

小區(qū)

甲小區(qū)

乙小區(qū)

分析數(shù)據(jù)

數(shù)據(jù)名稱

計量小區(qū)

平均數(shù)

中位數(shù)

眾數(shù)

甲小區(qū)

乙小區(qū)

應用數(shù)據(jù)

1)填空:=______=______;

2)若乙小區(qū)共有1200人參與答卷,請估計乙小區(qū)成績大于90分的人數(shù);

3)社區(qū)管理人員看完統(tǒng)計數(shù)據(jù),認為甲小區(qū)對新型冠狀病毒肺炎防護知識掌握更好,請你寫出社區(qū)管理人員的理由;為了更好地宣傳新型冠狀病毒肺炎防護知識,社區(qū)管理人員決定從甲、乙小區(qū)的4個滿分試卷中隨機抽取兩份試卷對小區(qū)居民進行網絡宣傳講解培訓,請用列表格或畫樹狀圖的方法求出甲、乙小區(qū)各抽到一份滿分試卷的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某寶網店銷售甲、乙兩種電器,已知甲種電器每個的售價比乙種電器多60元,馬老師從該網店購買了3個甲種電器和2個乙種電器,共花費780元.

(1)該店甲、乙兩種電器每個的售價各是多少元?

(2)根據(jù)銷售情況,店主決定用不少于10800元的資金購進甲、乙兩種電器,這兩種電器共100個,已知甲種電器每個的進價為150元,乙種電器每個的進價為80元.若所購進電器均可全部售出,請求出網店所獲利潤W()與甲種電器進貨量m()之間的函數(shù)關系式,并說明當m為何值時所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司銷售甲、乙兩種品牌的投影儀,這兩種投影儀的進價和售價如下表所示:

進價(元/套)

3000

2400

售價(元/套)

3300

2800

該公司計劃購進兩種投影儀若干套,共需66000元,全部銷售后可獲毛利潤9000元.

1)該公司計劃購進甲、乙兩種品牌的投影儀各多少套?

2)通過市場調研,該公司決定在原計劃的基礎上,減少甲種投影儀的購進數(shù)量,增加乙種投影儀的購進數(shù)量,已知乙種投影儀增加的數(shù)量是甲種投影儀減少的數(shù)量的2倍。若用于購進這兩種投影儀的總資金不超過75000元,問甲種投影儀購進數(shù)量至多減少多少套?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為更好地踐行社會主義核心價值觀,讓同學們珍惜糧食,學會感恩.校學生會積極倡導光盤行動,某天午餐后學生會干部隨機調查了部分同學就餐飯菜的剩余情況,并將結果統(tǒng)計后制成如圖所示的不完整的統(tǒng)計圖.

1)這次被調查的同學共有________名;

2)計算在扇形統(tǒng)計圖中剩大量飯菜所對應扇形圓心角的度數(shù);

3)校學生會通過數(shù)據(jù)分析,估計這次被調查的所有學生一餐浪費的食物可以提供40人用餐.據(jù)此估算,全校2000名學生一餐浪費的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,正方形與正方形有公共的頂點,連接,,,

   

①求證:;

②求的值;

2)將圖1中的正方形旋轉到圖2的位置,當,在一條直線上,若,求正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某游泳館推出了兩種收費方式

方式一:顧客先購買會員卡,每張會員卡200元,僅限本人一年內使用,憑卡游泳,每次游泳再付費30

方式二:顧客不購買會員卡,每次游泳付費40

設小亮在一年內來此游泳館游泳的次數(shù)為次(為正整數(shù))

(1)根據(jù)題意,填寫下表:

游泳次數(shù)

5

10

15

方式一的總費用(元)

350

650

方式二的總費用(元)

200

400

(2)若小亮計劃今年游泳的總費用為2000元,選擇哪種付費方式,他游泳的次數(shù)比較多;

(3)當時,小亮選擇哪種付費方式更合算.并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一次射擊訓練中甲、乙兩人的10次射擊成績的分布情況,則射擊成績的方差較小的是_____(填“甲”或“乙”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校研究學生的課余愛好情況,采取抽樣調查的方法,從閱讀、運動、娛樂、上網等四個方面調查了若干名學生的興趣愛好,并將調查結果繪制成下面兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:

(1)在這次調查中,一共調查了   名學生;

(2)補全條形統(tǒng)計圖;

(3)若該校共有1500名學生,估計愛好運動的學生有   人;

(4)在全校同學中隨機選取一名學生參加演講比賽,用頻率估計概率,則選出的恰好是愛好閱讀的學生的概率是   

查看答案和解析>>

同步練習冊答案