【題目】如圖,已知直線(xiàn)y=-2x+6x軸交于點(diǎn)A,與y軸交于點(diǎn)B.

(1)點(diǎn)A的坐標(biāo)為________,點(diǎn)B的坐標(biāo)為________.

(2)AOB的面積.

(3)直線(xiàn)AB上是否存在一點(diǎn)C(點(diǎn)C與點(diǎn)B不重合),使AOC的面積等于AOB的面積?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1) (3,0),(0,6);(2)9;(3)存在,點(diǎn)C的坐標(biāo)為(6,-6).

【解析】

(1)根據(jù)坐標(biāo)軸上點(diǎn)的坐標(biāo)特征求點(diǎn)和點(diǎn)坐標(biāo);

(2)根據(jù)三角形面積公式求解;

(3)根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,設(shè),則利用三角形面積公式得到,然后解絕對(duì)值方程求出的值即可得到點(diǎn)坐標(biāo).

(1)當(dāng)y=0時(shí),-2x+6=0,解得x=3,則A點(diǎn)的坐標(biāo)為(3,0);當(dāng)x=0時(shí),y=-2x+6=6,則B點(diǎn)的坐標(biāo)為(0,6).

(2)SAOB×3×6=9.

(3)存在.理由如下:設(shè)點(diǎn)C的坐標(biāo)為(t,-2t+6).

因?yàn)?/span>△AOC的面積等于△AOB的面積,所以×3×|-2t+6|=9,解得t1=6,t2=0(與點(diǎn)B重合,舍去).所以點(diǎn)C的坐標(biāo)為(6,-6).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,這是一個(gè)五角星ABCDE,你能計(jì)算出∠A+B+C+D+E的度數(shù)嗎?為什么?(必須寫(xiě)推理過(guò)程)

(2)如圖2,如果點(diǎn)B向右移動(dòng)到AC上,那么還能求出∠A+DBE+C+D+E的大小嗎?若能結(jié)果是多少?(可不寫(xiě)推理過(guò)程)

(3)如圖,當(dāng)點(diǎn)B向右移動(dòng)到AC的另一側(cè)時(shí),上面的結(jié)論還成立嗎?

(4)如圖4,當(dāng)點(diǎn)B、E移動(dòng)到∠CAD的內(nèi)部時(shí),結(jié)論又如何?根據(jù)圖3或圖4,說(shuō)明你計(jì)算的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,正方形ABCD與正方形BEFG是以原點(diǎn)O為位似中心的位似圖形,且相似比為1:3,點(diǎn)A,B,E在x軸上.
(1)若點(diǎn)F的坐標(biāo)為(6,3),直接寫(xiě)出點(diǎn)C和點(diǎn)A的坐標(biāo);
(2)若正方形BEFG的邊長(zhǎng)為6,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD是角平分錢(qián),點(diǎn)E在A(yíng)C上,且∠EAD=∠ADE.
(1)求證:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)題意,解答問(wèn)題:

(1)如圖1,已知直線(xiàn)y=2x+4x軸、y軸分別交于A、B兩點(diǎn),求線(xiàn)段AB的長(zhǎng).

(2)如圖2,類(lèi)比(1)的解題過(guò)程,請(qǐng)你通過(guò)構(gòu)造直角三角形的方法,求出點(diǎn)M(3,4)與點(diǎn)N(﹣2,﹣1)之間的距離.

(3)在(2)的基礎(chǔ)上,若有一點(diǎn)Dx軸上運(yùn)動(dòng),當(dāng)滿(mǎn)足DM=DN時(shí),請(qǐng)求出此時(shí)點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D、E、F分別為△ABC的三邊中點(diǎn),試說(shuō)明△ABC∽△EFD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組的同學(xué)利用標(biāo)桿測(cè)量旗桿(AB)的高度:將一根5米高的標(biāo)桿(EF)豎在某一位置,有一名同學(xué)站在一處與標(biāo)桿、旗桿成一條直線(xiàn),此時(shí)他看到標(biāo)桿頂端與旗桿頂端重合,另外一名同學(xué)測(cè)得站立的同學(xué)離標(biāo)桿3米,離旗桿30米.如果站立的同學(xué)的眼睛距地面(CD)1.6米,求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將下列各數(shù)填入相應(yīng)的大括號(hào)內(nèi):

3.141 592 6,,,-6,8,,2-π,0.014 545 454 5,-,0,,0.323 223 222 3.

(1)有理數(shù):{                       };

(2)無(wú)理數(shù):{                       };

(3)正無(wú)理數(shù):{                      };

(4)整數(shù):{                        }.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,ADBC于點(diǎn)D,EAB邊上任意一點(diǎn),EFBC于點(diǎn)F,1=2.求證:DGAB.請(qǐng)把證明的過(guò)程填寫(xiě)完整.

證明:∵ADBC,EFBC(   ),

∴∠EFB=ADB=90°(垂直的定義)

EF      

∴∠1=      

又∵∠1=2(已知)

      

DGAB(   

查看答案和解析>>

同步練習(xí)冊(cè)答案