【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,3),B(﹣3,n)兩點.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;

(3)過點BBC⊥x軸,垂足為C,求SABC

【答案】1,y=x+1;(2-3x0x2;(3SABC=5

【解析】

1)由一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A2,3),B-3,n)兩點,首先求得

反比例函數(shù)的解析式,則可求得B點的坐標(biāo),然后利用待定系數(shù)法即可求得一次函數(shù)的解析式;

2)根據(jù)圖象,觀察即可求得答案;

3)因為以BC為底,則BC邊上的高為3+2=5,所以利用三角形面積的求解方法即可求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀理解下面的例題,再按要求解答下列問題:

例題:解一元二次不等式,

解:∵,∴可化為,

由有理數(shù)的乘法法則兩數(shù)相乘,同號得正,有

1或(2

解不等式組(1),得,解不等式組(2),得,

的解集為

即一元二次不等式的解集為

問題:(1)一元二次不等式的解集為______

2)求分式不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點A逆時針旋轉(zhuǎn)60°,點O,B的對應(yīng)點分別為O′,B′,連接BB′,則圖中陰影部分的面積是( )

A. B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:如圖1,在中,把AB繞點A順時針旋轉(zhuǎn)得到,把AC繞點A逆時針旋轉(zhuǎn)得到,連接當(dāng)時,我們稱的“旋補三角形”, 上的中線AD叫做的“旋補中線”,點A叫做“旋補中心”.

特例感知:

在圖2,圖3中,的“旋補三角形”,AD的“旋補中線”.

如圖2,當(dāng)為等邊三角形時,ADBC的數(shù)量關(guān)系為______BC;

如圖3,當(dāng),時,則AD長為______

猜想論證:

在圖1中,當(dāng)為任意三角形時,猜想ADBC的數(shù)量關(guān)系,并給予證明.

拓展應(yīng)用

如圖4,在四邊形ABCD,,,在四邊形內(nèi)部是否存在點P,使的“旋補三角形”?若存在,給予證明,并求的“旋補中線”長;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x與雙曲線y= (k>0,x>0)交于點A,將直線y=x向上平移4個單位長度后,y軸交于點C,與雙曲線y= (k>0,x>0)交于點B,OA=3BC,k的值為(   )

A. 3 B. 6 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是反比例函數(shù)y=的圖象的一個分支,對于給出的下列說法:

常數(shù)k的取值范圍k>2;②另一分支在第三象限;在函數(shù)圖象上取點A(a1,b1)和點B(a2,b2),當(dāng)a1>a2,b1<b2;④在函數(shù)圖象的某一分支上取點A(a1,b1)和點B(a2,b2),當(dāng)a1>a2b1<b2.其中正確的是__________.(在橫線上填上正確的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)y=x與反比例函數(shù)y= (x>0)的圖象交于點A.y=x的圖象向下移6個單位后與雙曲線y=交于點B,x軸交于點C.

(1)求點C的坐標(biāo);

(2)=2,求反比例函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,已知于點D,AE平分

(1)試探究的關(guān)系;

(2)若FAE上一動點,當(dāng)F移動到AE之間的位置時,,如圖2所示,此時的關(guān)系如何?

(3)若FAE上一動點,當(dāng)F繼續(xù)移動到AE的延長線上時,如圖3,,①中的結(jié)論是否還成立?如果成立請說明理由,如果不成立,寫出新的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案