【題目】如圖,直線y=x與雙曲線y= (k>0,x>0)交于點A,將直線y=x向上平移4個單位長度后,與y軸交于點C,與雙曲線y= (k>0,x>0)交于點B,若OA=3BC,則k的值為( )
A. 3 B. 6 C. D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A(-1,0),B(0,2),點C在x軸上,且∠ABC=90°.
(1)求點C的坐標(biāo);
(2)求經(jīng)過A,B,C三點的拋物線的表達(dá)式;
(3)在(2)中的拋物線上是否存在點P,使∠PAC=∠BCO?若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點D為等腰直角△ABC內(nèi)一點,∠ACB=90°,AD=BD,∠BAD=30°,E為AD延長線上的一點,且CE=CA,若點M在DE上,且DC=DM.則下列結(jié)論中:①∠ADB=120°;②△ADC≌△BDC;③線段DC所在的直線垂直平分線AB;④ME=BD;正確的有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(2,3)且AO=BO,∠AOB=90°則點B的坐標(biāo)為( 。
A.(2,3)B.(-3,2)C.(-3,-2)D.(-2,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,3),B(﹣3,n)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;
(3)過點B作BC⊥x軸,垂足為C,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】M(1,a)是一次函數(shù)y=3x+2與反比例函數(shù)y=圖象的公共點,若將一次函數(shù)y=3x+2的圖象向下平移4個單位,則它與反比例函數(shù)圖象的交點坐標(biāo)為_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店分兩次購進(jìn)兩種商品進(jìn)行銷售,兩次購進(jìn)同一種商品的進(jìn)價相同,具體情況如下表所示:
購進(jìn)數(shù)量(件) | 購進(jìn)所需費用(元) | ||
|
| ||
第一次 | 30 | 40 | 3800 |
第二次 | 40 | 30 | 3200 |
(1) 求兩種商品每件的進(jìn)價分別是多少元?
(2) 商場決定種商品以每件30元出售,種商品以每件100元出售.為滿足市場需求,需購進(jìn)兩種商品共1000件,且種商品的數(shù)量不少于種商品數(shù)量的4倍,請你求出獲利最大的進(jìn)貨方案,并確定最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,取斜邊AB的中點E,易得△BCE是等邊三角形,從而得到“直角三角形中,30°角所對的直角邊等于斜邊的一半”利用這個結(jié)論解決問題:
如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,若動點P從點A出發(fā),沿AB以每秒2個單位長度的速度向終點B運動.過點P作PD⊥AC于點D(點P不與點A.B重合),作∠DPQ=60°,邊PQ交射線DC于點Q.設(shè)點P的運動時間為t秒.
(1)用含t的代數(shù)式表示線段DC的長;
(2)當(dāng)線段PQ的垂直平分線經(jīng)過△ABC一邊中點時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F分別是AD和AD延長線上的點,且DE=DF,連結(jié)BF,CE.下列說法①△BDF≌△CDE;②△ABD和△ACD面積相等;③BF∥CE;④CE=BF.其中正確的有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com