科目: 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點的橫坐標分別為﹣1,3,則下列結(jié)論正確的個數(shù)有( ) ①ac<0;②2a+b=0;③4a+2b+c>0;④對于任意x均有ax2+bx≥a+b.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,將斜邊長為4,∠A為30°角的Rt△ABC繞點B順時針旋轉(zhuǎn)120°得到△A′C′B,弧 、 是旋轉(zhuǎn)過程中A、C的運動軌跡,則圖中陰影部分的面積為( )
A.4π+2
B.
π﹣2
C.
π+2
D.4π
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知鈍角三角形ABC,將△ABC繞點A按逆時針方向旋轉(zhuǎn)110°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為( )
A.55°
B.65°
C.75°
D.85°
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,O是AC上一動點(不與點A、C重合),過O作直線MN∥BC,設MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F.
(1)OE與OF相等嗎?證明你的結(jié)論;
(2)試確定點O的位置,使四邊形AECF是矩形,并加以證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=x2﹣2bx﹣3(b為常數(shù),b<0).
(1)拋物線y=x2﹣2bx﹣3總經(jīng)過一定點,定點坐標為;
(2)拋物線的對稱軸為直線x=(用含b的代數(shù)式表示),位于y軸的
側(cè).
(3)思考:若點P(﹣2,﹣1)在拋物線y=x2﹣2bx﹣3上,拋物線與反比例函數(shù)y= (k>0,x>0)的圖象在第一象限內(nèi)交點的橫坐標為a,且滿足2<a<3,試確定k的取值范圍.
(4)探究:設點A是拋物線上一點,且點A的橫坐標為m,以點A為頂點做邊長為1的正方形ABCD,AB⊥x軸,點C在點A的右下方,若拋物線與CD邊相交于點P(不與D點重合且不在y軸上),點P的縱坐標為﹣3,求b與m之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:線段CB=6,點A在線段BC上,且CA=2,以AB為直徑做半圓O,點D為半圓O上的動點,以CD為邊向外作等邊△CDE.
(1)發(fā)現(xiàn):CD的最小值是 , 最大值是 , △CBD面積的最大值是 .
(2)思考:如圖1,當線段CD所在直線與半圓O相切時,求弧BD的長.
(3)探究:如圖2,當線段CD與半圓O有兩個公共點D,M時,若CM=DM,求等邊△CDE面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為BC邊上一點,且AB=AE.
(1)求證:△ABC≌△EAD;
(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】某采摘農(nóng)場計劃種植A,B兩種草莓共6畝,根據(jù)表格信息,解答下列問題:
項目 品種 | A | B |
年畝產(chǎn)(單位:千克) | 1200 | 2000 |
采摘價格 | 60 | 40 |
(1)若該農(nóng)場每年草莓全部被采摘的總收入為460000元,那么A、B兩種草莓各種多少畝?
(2)若要求種植A種草莓的畝數(shù)不少于種植B種草莓的一半,那么種植A種草莓多少畝時,可使該農(nóng)場每年草莓全部被采摘的總收入最多?并求出最多總收入.
查看答案和解析>>
科目: 來源: 題型:
【題目】小敏家對面新建了一幢圖書大廈,小敏在自家窗口測得大廈頂部的仰角為45°,大廈底部的仰角為30°,如圖所示,量得兩幢樓之間的距離為20 米.
(1)求出大廈的高度BD;
(2)求出小敏家的高度AE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com