科目: 來源: 題型:
【題目】(1)如圖1,∠MAN=90°,射線AE在這個角的內(nèi)部,點B、C分別在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點F,BD⊥AE于點D.求證:△ABD≌△CAF;
(2)如圖2,點B、C分別在∠MAN的邊AM、AN上,點E、F都在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)如圖3,在△ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,求△ACF與△BDE的面積之和.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,AB與EC交于點D.問:
(1)EC與BF有什么大小關(guān)系?并說明理由.
(2)EC與BF的位置關(guān)系是__________.(直接寫出結(jié)論,不證明)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB邊的垂直平分線交BC于D,AC邊的垂直平分線交BC于E, 與相交于點O,△ADE的周長為6cm.
(1)求BC的長;
(2)分別連結(jié)OA、OB、OC,若△OBC的周長為16cm,求OA的長;
查看答案和解析>>
科目: 來源: 題型:
【題目】魔方,又叫魔術(shù)方塊,也稱魯比克方塊,是匈牙利布達佩斯建筑學(xué)院厄爾諾·魯比克教授在1974年發(fā)明的。魔方與中國人發(fā)明的“華容道”,法國人發(fā)明的“獨立鉆石”一同被稱為智力游戲界的三大不可思議。如圖是一個4階魔方,又稱“魔方的復(fù)仇”,由四層完全相同的64個小立方體組成,體積為64.
(1)求組成這個魔方的小立方體的棱長.
(2)圖中陰影部分是一個正方形,則該陰影部分正方形的面積為_________ . 邊長是___________ .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,△AOB為等腰直角三角形,A(4,4)
(1)求B點坐標(biāo);
(2)如圖2,若C為x正半軸上一動點,以AC為直角邊作等腰直角△ACD,∠ACD=90°,連接OD,求∠AOD的度數(shù);
(3)如圖3,過點A作y軸的垂線交y軸于E,F為x軸負(fù)半軸上一點,G在EF的延長線上,以EG為直角邊作等腰Rt△EGH,過A作x軸垂線交EH于點M,連FM,等式AM=FM+OF是否成立?若成立,請說明;若不成立,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】鈍角三角形ABC中,∠BAC>90°,AB=AC,∠ACB=α,過點A的直線l交BC邊于點D.點E在直線l上,且BC=BE.,點E在AD延長線上.
①當(dāng)α=30°,點D恰好為BC中點時,補全圖1直接寫出∠BAE= °,
∠BEA= °;
②如圖2,若∠BAE=2α,求∠BEA的度數(shù)(用含α的代數(shù)式表示);
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:在△ABC中, ∠B=60°,D、E分別為AB、BC上的點,且AE、CD交于點F.
(1)如圖1,若AE、CD為△ABC的角平分線. ①求證: ∠AFC=120°;②若AD=6,CE=4,求AC的長?
(2)如圖2,若∠FAC=∠FCA=30°,求證:AD=CE.
查看答案和解析>>
科目: 來源: 題型:
【題目】今年9月,莉莉進入八中初一,在準(zhǔn)備開學(xué)用品時,她決定購買若干個某款筆記本,甲、乙兩家文具店都有足夠數(shù)量的該款筆記本,這兩家文具店該款筆記本標(biāo)價都是20元/個.甲文具店的銷售方案是:購買該筆記本的數(shù)量不超過5個時,原價銷售;購買該筆記本超過5個時,從第6個開始按標(biāo)價的八折出售:乙文具店的銷售方案是:不管購買多少個該款筆記本,一律按標(biāo)價的九折出售.
(1)若設(shè)莉莉要購買x(x>5)個該款筆記本,請用含x的代數(shù)式分別表示莉莉到甲文具店和乙文具店購買全部該款筆記本所需的費用;
(2)在(1)的條件下,莉莉購買多少個筆記本時,到乙文具店購買全部筆記本所需的費用與到甲文具店購買全部筆記本所需的費用相同?
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)如圖1,賢賢同學(xué)用手工紙制作一個臺燈燈罩,請畫出這個幾何體的左視圖和俯視圖.
(2)如圖2,已知直線AB與CD相交于點O,EO⊥AB,OF是∠AOC的平分線,∠EOC=∠AOC,求∠DOF的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com