科目: 來源: 題型:
【題目】如圖,△ABC中,BO平分∠ABC,CO平分∠ACB,MN經(jīng)過點(diǎn)O,與AB,AC相交于點(diǎn)M,N,且MN∥BC,若AB=5,AC=6,則△AMN的周長為( )
A. 7 B. 9 C. 11 D. 16
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,∠ABC=90°,D、E分別在BC、AC上,AD⊥DE,且AD=DE,點(diǎn)F是AE的中點(diǎn),FD、AB的延長線相交于點(diǎn)M,連接MC.
(1)求證:∠FMC=∠FCM;
(2)將條件中的AD⊥DE與(1)中的結(jié)論互換,其他條件不變,命題是否正確?請給出理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】北京奧運(yùn)會開幕前,某體育用品商場預(yù)測某品牌運(yùn)動服能夠暢銷,就用32000元購進(jìn)了一批這種運(yùn)動服,上市后很快脫銷,商場又用68 000元購進(jìn)第二批這種運(yùn)動服,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但每套進(jìn)價(jià)多了10元.
(1)該商場兩次共購進(jìn)這種運(yùn)動服多少套?
(2)如果這兩批運(yùn)動服每套的售價(jià)相同,且全部售完后總利潤率不低于20%,那么每套售價(jià)至少是多少元?(利潤率=×100%)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D在BC邊上,點(diǎn)E在AC的延長線上,DE=DA.
(1)求證:∠BAD=∠EDC;
(2)作出點(diǎn)E關(guān)于直線BC的對稱點(diǎn)M,連接DM、AM,猜想DM與AM的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,AB是直徑,OD⊥BC于點(diǎn)D,延長DO交⊙O于F,連接OC,AF.
(1)求證:△COD≌△BOD;
(2)填空:①當(dāng)∠1=時(shí),四邊形OCAF是菱形; ②當(dāng)∠1=時(shí),AB=2 OD.
查看答案和解析>>
科目: 來源: 題型:
【題目】保護(hù)環(huán)境、低碳出行已漸漸成為人們的習(xí)慣.最近無為縣城又引進(jìn)了共享單車,只需要交點(diǎn)押金,就可以通過掃描二維碼的方式解鎖一輛停在路邊的自行車,以極低的費(fèi)用,輕松騎到目的地.王老師家與學(xué)校相距2km,現(xiàn)在每天騎共享單車到學(xué)校所花的時(shí)間比過去騎電動車多用4min.已知王老師騎電動車的速度是騎共享單車速度的1.5倍,則王老師騎共享單車的速度是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,(1)指出DC和AB被AC所截得的內(nèi)錯(cuò)角;
(2)指出AD和BC被AE所截得的同位角;
(3)指出∠4與∠7,∠2與∠6,∠ADC與∠DAB各是什么關(guān)系的角,并指出各是哪兩條直線被哪一條直線所截形成的.
查看答案和解析>>
科目: 來源: 題型:
【題目】任何一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×q(p、q是正整數(shù),且p≤q).如果p×q在n的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解,并且規(guī)定F(n)=.例如18=1×18=2×9=3×6,這時(shí)就有F(18)=.請解答下列問題:
(1)計(jì)算:F(24);
(2)當(dāng)n為正整數(shù)時(shí),求證:F(n3+2n2+n)=.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,將一個(gè)長方形沿著對角線剪開即可得到兩個(gè)全等的三角形,再把△ABC沿著AC方向平移,得到圖②中的△GBH,BG交AC于點(diǎn)E,GH交CD于點(diǎn)F.在圖②中,除△ACD與△HGB全等外,你還可以指出哪幾對全等的三角形(不能添加輔助線和字母)?請選擇其中一對加以證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】將一副三角板按如圖所示的方式擺放,其中△ABC為含有45°角的三角板,直線AD是等腰直角三角板的對稱軸,且斜邊上的點(diǎn)D為另一塊三角板DMN的直角頂點(diǎn),DM、DN分別交AB、AC于點(diǎn)E、F.則下列四個(gè)結(jié)論:①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④S四邊形AEDF=BC2.其中正確結(jié)論是_____(填序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com