科目: 來源: 題型:
【題目】已知:如圖,四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).
(1)四邊形EFGH的形狀是_____,證明你的結論;
(2)當四邊形ABCD的對角線滿足_____條件時,四邊形EFGH是矩形(不證明)
(3)你學過的哪種特殊四邊形的中點四邊形是矩形?_____(不證明)
查看答案和解析>>
科目: 來源: 題型:
【題目】下列命題中,正確的個數(shù)是 ( )
①若三條線段的比為1:1:,則它們組成一個等腰直角三角形;②兩條對角線相等的平行四邊形是矩形;③對角線互相垂直的四邊形是菱形;④有兩個角相等的梯形是等腰梯形;⑤一條直線與矩形的一組對邊相交,必分矩形為兩個直角梯形。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目: 來源: 題型:
【題目】為傳承優(yōu)秀傳統(tǒng)文化,某校為各班購進三國演義和水滸傳注音讀本若干套,其中每套三國演義注音讀本的價格比每套水滸傳注音讀本的價格貴60元,用4800元購買水滸傳注音讀本的套數(shù)是用3600元購買三國演義注音讀本套數(shù)的2倍,求每套水滸傳注音讀本的價格.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著幾何部分的學習,小鵬對幾何產(chǎn)生了濃厚的興趣,他最喜歡利用手中的工具畫圖了如圖,作一個,以O為圓心任意長為半徑畫弧分別交OA,OB于點C和點D,將一副三角板如圖所示擺放,兩個直角三角板的直角頂點分別落在點C和點D,直角邊中分別有一邊與角的兩邊重合,另兩條直角邊相交于點P,連接小鵬通過觀察和推理,得出結論:OP平分.
你同意小鵬的觀點嗎?如果你同意小鵬的觀點,試結合題意寫出已知和求證,并證明.
已知:中,____________,____________,____________.
求證:OP平分.
查看答案和解析>>
科目: 來源: 題型:
【題目】(8分)如圖,在△ABC中,∠C=60°,∠A=40°.
(1)用尺規(guī)作圖作AB的垂直平分線,交AC于點D,交AB于點E(保留作圖痕跡,不要求寫作法和證明);
(2)求證:BD平分∠CBA.
查看答案和解析>>
科目: 來源: 題型:
【題目】“綠水青山,就是金山銀山”。某旅游景區(qū)為了保護環(huán)境,需購買、兩種型號的垃圾處理設備共臺。已知每臺型設備日處理能力為噸;每臺型設備日處理能力為噸。根據(jù)實際情況,要求型設備不多于型設備的倍,且購回的設備日處理能力不低于噸。請你為該景區(qū)設計購買、設備的方案。
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀材料,回答問題
一艘輪船以20海里/時的速度由西向東航行,途中接到臺風警報,臺風中心正以40海里/時的速度由南向北移動,距臺風中心20 海里的圓形區(qū)域(包括邊界)都屬臺風區(qū),當輪船到A處時,測得臺風中心移到位于點A正南方向B處,且AB=100海里.
(1)若這艘輪船自A處按原速度和方向繼續(xù)航行,在途中會不會遇到臺風?若會,試求輪船最初遇到臺風的時間;若不會,說明理由;
(2)現(xiàn)輪船自A處立即提高船速,向位于北偏東60°方向,相距60海里的D港駛去,為使臺風到來之前,到達D港,問船速至少應提高多少(提高的船速取整數(shù), ≈3.6)?
查看答案和解析>>
科目: 來源: 題型:
【題目】紅星中學計劃組織“春季研修活動,活動組織負責人從公交公司了解到如下租車信息:
車型 | ||
載客量(人/輛) | ||
租金(元/輛) |
校方從實際情況出發(fā),決定租用、型客車共輛,而且租車費用不超過元。
(1)請為校方設計可能的租車方案;
(2)在(1)的條件下,校方根據(jù)自愿的原則,統(tǒng)計發(fā)現(xiàn)有人參加,請問校方應如何租車,且又省錢?
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或將△ACD繞著點D逆時針旋轉180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關系即可判斷.
中線AD的取值范圍是 ;
(2)問題解決:
如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;
(3)問題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關系,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com