相關習題
 0  352458  352466  352472  352476  352482  352484  352488  352494  352496  352502  352508  352512  352514  352518  352524  352526  352532  352536  352538  352542  352544  352548  352550  352552  352553  352554  352556  352557  352558  352560  352562  352566  352568  352572  352574  352578  352584  352586  352592  352596  352598  352602  352608  352614  352616  352622  352626  352628  352634  352638  352644  352652  366461 

科目: 來源: 題型:

【題目】在矩形ABCD中,ACBD交于點O,點P、E分別是直線BDBC上的動點,且PEPC,過點EEFAC交直線BD于點F

1)如圖1,當∠COD90°時,判斷BEF的形狀,并說明理由;

2)如圖2,當點P在線段BO上時,求證:OPBF;

3)當∠COD60°CD3時,請直接寫出當PEF成為直角三角形時的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】閱讀下列一段文字:在直角坐標系中,已知兩點的坐標是Mx1,y1),Nx2y2)),M,N兩點之間的距離可以用公式MN計算.解答下列問題:

1)若點P24),Q(﹣3,﹣8),求P,Q兩點間的距離;

2)若點A1,2),B4,﹣2),點O是坐標原點,判斷AOB是什么三角形,并說明理由.

3)已知點A(5,5)B(-4,7),點Px軸上,且要使PA+PB的和最小,求PA+PB的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,P、Q分別是⊙O的內(nèi)接正五邊形的邊AB、BC上的點,BP=CQ,則∠POQ=

查看答案和解析>>

科目: 來源: 題型:

【題目】周末,小李8時騎自行車從家里出發(fā),到野外郊游,16時回到家里.他離家的距離s(千米)與時間t()之間的關系可以用圖中的折線表示.現(xiàn)有如下信息:

①小李到達離家最遠的地方是14時;

②小李第一次休息時間是10時;

11時到12時,小李騎了5千米;

④返回時,小李的平均速度是10千米/.

其中,正確的有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目: 來源: 題型:

【題目】已知一個角的兩邊與另一個角的兩邊分別平行,請結合圖,探索這兩個角之間的關系,并說明理由.

(1)如圖①,AB∥CD,BE∥DF,∠1與∠2的關系是 ;

證明:

(2)如圖②,AB∥CD,BE∥DF,∠1與∠2的關系是 ;

證明:

(3)經(jīng)過上述證明,我們可得出結論,如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角 ;

(4)若這兩個角的兩邊分別平行,且一個角比另一個角的3倍少60°,則這兩個角分別是多少度?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,矩形ABCD中,EAD的中點,延長CE,BA交于點F,連接AC,DF

(1)求證:四邊形ACDF是平行四邊形;

(2)當CF平分∠BCD時,寫出BCCD的數(shù)量關系,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】數(shù)學活動課上,張老師說:是無理數(shù),無理數(shù)就是無限不循環(huán)小數(shù),同學們,你能把的小數(shù)部分全部寫出來嗎?大家議論紛紛,晶晶同學說:要把它的小數(shù)部分全部寫出來是非常難的,但我們可以用(1)表示它的小數(shù)部分.張老師說:晶晶同學的說法是正確的,因為124,所以12,所以的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.亮亮說:既然如此,因為23,所以的小數(shù)部分就是(2)了.張老師說:亮亮真的很聰明.接著,張老師出示了一道練習題:已知8+=x+y,其中x是一個整數(shù),且0y1,請你求出2x+(y)2019的值.請同樣聰明的你給出正確答案.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,BC=8,AC=6,將△ABC沿AE折疊 使點C恰好落在AB邊上的點F.BE的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,連接BD,且BD=CD,過點AAMBD于點M,過點DDNAB于點N,且DN=,在DB的延長線上取一點P,滿足∠ABD=MAP+PAB,則AP=_____.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知:如圖,CDDA,DAAB,∠1=2.試確定射線DFAE的位置關系,并說明你的理由.

某同學在解決上面問題時,準備三步走,請你完成他的步驟.

(1)問題的結論:DF____AE

(2)思路要使DF_____AE,只要∠3=____

(3)說理過程:

解:∵CDDA,DAAB,

∴∠CDA=DAB=________( )

又∵∠1=2,

∴∠CDA﹣∠2=________( )

即∠3=______,

DF_____AE( )

查看答案和解析>>

同步練習冊答案