科目: 來源: 題型:
【題目】在矩形ABCD中,AC、BD交于點O,點P、E分別是直線BD、BC上的動點,且PE=PC,過點E作EF∥AC交直線BD于點F.
(1)如圖1,當∠COD=90°時,判斷△BEF的形狀,并說明理由;
(2)如圖2,當點P在線段BO上時,求證:OP=BF;
(3)當∠COD=60°,CD=3時,請直接寫出當△PEF成為直角三角形時的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下列一段文字:在直角坐標系中,已知兩點的坐標是M(x1,y1),N(x2,y2)),M,N兩點之間的距離可以用公式MN=計算.解答下列問題:
(1)若點P(2,4),Q(﹣3,﹣8),求P,Q兩點間的距離;
(2)若點A(1,2),B(4,﹣2),點O是坐標原點,判斷△AOB是什么三角形,并說明理由.
(3)已知點A(5,5),B(-4,7),點P在x軸上,且要使PA+PB的和最小,求PA+PB的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】周末,小李8時騎自行車從家里出發(fā),到野外郊游,16時回到家里.他離家的距離s(千米)與時間t(時)之間的關系可以用圖中的折線表示.現(xiàn)有如下信息:
①小李到達離家最遠的地方是14時;
②小李第一次休息時間是10時;
③11時到12時,小李騎了5千米;
④返回時,小李的平均速度是10千米/時.
其中,正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目: 來源: 題型:
【題目】已知一個角的兩邊與另一個角的兩邊分別平行,請結(jié)合圖,探索這兩個角之間的關系,并說明理由.
(1)如圖①,AB∥CD,BE∥DF,∠1與∠2的關系是 ;
證明:
(2)如圖②,AB∥CD,BE∥DF,∠1與∠2的關系是 ;
證明:
(3)經(jīng)過上述證明,我們可得出結(jié)論,如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角 ;
(4)若這兩個角的兩邊分別平行,且一個角比另一個角的3倍少60°,則這兩個角分別是多少度?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當CF平分∠BCD時,寫出BC與CD的數(shù)量關系,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】數(shù)學活動課上,張老師說:“是無理數(shù),無理數(shù)就是無限不循環(huán)小數(shù),同學們,你能把的小數(shù)部分全部寫出來嗎?”大家議論紛紛,晶晶同學說:“要把它的小數(shù)部分全部寫出來是非常難的,但我們可以用(﹣1)表示它的小數(shù)部分.”張老師說:“晶晶同學的說法是正確的,因為1<2<4,所以1<<2,所以的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.”亮亮說:“既然如此,因為2<<3,所以的小數(shù)部分就是(﹣2)了.”張老師說:“亮亮真的很聰明.”接著,張老師出示了一道練習題:“已知8+=x+y,其中x是一個整數(shù),且0<y<1,請你求出2x+(﹣y)2019的值”.請同樣聰明的你給出正確答案.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,連接BD,且BD=CD,過點A作AM⊥BD于點M,過點D作DN⊥AB于點N,且DN=,在DB的延長線上取一點P,滿足∠ABD=∠MAP+∠PAB,則AP=_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,CD⊥DA,DA⊥AB,∠1=∠2.試確定射線DF與AE的位置關系,并說明你的理由.
某同學在解決上面問題時,準備三步走,請你完成他的步驟.
(1)問題的結(jié)論:DF____AE.
(2)思路要使DF_____AE,只要∠3=____.
(3)說理過程:
解:∵CD⊥DA,DA⊥AB,
∴∠CDA=∠DAB=________.( )
又∵∠1=∠2,
∴∠CDA﹣∠2=____﹣____,( )
即∠3=______,
∴DF_____AE.( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com