科目: 來源: 題型:
【題目】為宣傳6月6日世界海洋日,某校九年級舉行了主題為“珍惜海洋資源,保護海洋生物多樣性”的知識競賽活動.為了解全年級500名學生此次競賽成績(百分制)的情況,隨機抽取了部分參賽學生的成績,整理并繪制出如下不完整的統(tǒng)計表(表1)和統(tǒng)計圖(如圖).表1知識競賽成績分組統(tǒng)計表
組別 | 分數(shù)/分 | 頻數(shù) |
10 | ||
14 | ||
18 |
請根據(jù)圖表信息解答以下問題:
(1)本次調(diào)查一共隨機抽取了________個參賽學生的成績,表1中________;
(2)所抽取的參賽學生的成績的中位數(shù)落在的“組別”是________;
(3)請你估計,該校九年級競賽成績達到80分以上(含80分)的學生約多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,ABCD的周長為36,對角線AC、BD相交于點O,點E是CD的中點,BD=12,則△DOE的周長為( 。
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.
(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,銳角△ABC的兩條高BE、CD相交于點O,且OB=OC,∠A=60°.
(1)求證:△ABC是等邊三角形;
(2)判斷點O是否在∠BAC的平分線上,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】俄羅斯足球世界杯點燃了同學們對足球運動的熱情,某學校劃購買甲、乙兩種品牌的足球供學生使用.已知用1000 元購買甲種足球的數(shù)量和用1600元購買乙種足球的數(shù)量相同,甲種足球的單價比乙種足球的單價少30元.
(1)求甲、乙兩種品牌的足球的單價各是多少元?
(2)學枝準備一次性購買甲、乙兩種品牌的足球共25個,但總費用不超過1610元,那么這所學校最多購買多少個乙種品牌的足球?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,⊙M與菱形ABCD在平面直角坐標系中,點M的坐標為(﹣3,1),點A的坐標為(2,0),點B的坐標為(1,﹣),點D在x軸上,且點D在點A的右側(cè).
(1)求菱形ABCD的周長;
(2)若⊙M沿x軸向右以每秒2個單位長度的速度平移,菱形ABCD沿x軸向左以每秒3個單位長度的速度平移,設菱形移動的時間為t(秒),當⊙M與AD相切,且切點為AD的中點時,連接AC,求t的值及∠MAC的度數(shù);
(3)在(2)的條件下,當點M與AC所在的直線的距離為1時,求t的值.
【答案】(1)菱形的周長為8;(2)t=,∠MAC=105°;(3)當t=1﹣或t=1+時,圓M與AC相切.
【解析】試題分析:(1)過點B作BE⊥AD,垂足為E.由點A和點B的坐標可知:BE=,AE=1,依據(jù)勾股定理可求得AB的長,從而可求得菱形的周長;(2)記 M與x軸的切線為F,AD的中點為E.先求得EF的長,然后根據(jù)路程=時間×速度列出方程即可;平移的圖形如圖3所示:過點B作BE⊥AD,垂足為E,連接MF,F為 M與AD的切點.由特殊銳角三角函數(shù)值可求得∠EAB=60°,依據(jù)菱形的性質(zhì)可得到∠FAC=60°,然后證明△AFM是等腰直角三角形,從而可得到∠MAF的度數(shù),故此可求得∠MAC的度數(shù);(3)如圖4所示:連接AM,過點作MN⊥AC,垂足為N,作ME⊥AD,垂足為E.先求得∠MAE=30°,依據(jù)特殊銳角三角函數(shù)值可得到AE的長,然后依據(jù)3t+2t=5-AE可求得t的值;如圖5所示:連接AM,過點作MN⊥AC,垂足為N,作ME⊥AD,垂足為E.依據(jù)菱形的性質(zhì)和切線長定理可求得∠MAE=60°,然后依據(jù)特殊銳角三角函數(shù)值可得到EA=,最后依據(jù)3t+2t=5+AE.列方程求解即可.
試題解析:( )如圖1所示:過點作,垂足為,
∵, ,
∴, ,
∴,
∵四邊形為菱形,
∴,
∴菱形的周長.
()如圖2所示,⊙與軸的切線為, 中點為,
∵,
∴,
∵,且為中點,
∴, ,
∴,
解得.
平移的圖形如圖3所示:過點作,
垂足為,連接, 為⊙與切點,
∵由()可知, , ,
∴,
∴,
∴,
∵四邊形是菱形,
∴,
∵為切線,
∴,
∵為的中點,
∴,
∴是等腰直角三角形,
∴,
∴.
()如圖4所示:連接,過點作,垂足為,作,垂足為,
∵四邊形為菱形, ,
∴.
∵、是圓的切線
∴,
∵。
∴,
∴,
∴.
如圖5所示:連接,過點作,垂足為,作,垂足為,
∵四邊形為菱形, ,
∴,
∴,
∵、是圓的切線,
∴,
∵,
∴,
∴,
∴.
綜上所述,當或時,圓與相切.
點睛:此題是一道圓的綜合題.圓中的方法規(guī)律總結(jié):1、分類討論思想:研究點、直線和圓的位置關(guān)系時,就要從不同的位置關(guān)系去考慮,即要全面揭示點、直線和元的各種可能的位置關(guān)系.這種位置關(guān)系的考慮與分析要用到分類討論思想.1、轉(zhuǎn)化思想:(1)化“曲面”為“平面”(2)化不規(guī)則圖形面積為規(guī)則圖形的面積求解.3、方程思想:再與圓有關(guān)的計算題中,除了直接運用公式進行計算外,有時根據(jù)圖形的特點,列方程解答,思路清楚,過程簡捷.
【題型】解答題
【結(jié)束】
28
【題目】如圖1,在平面直角坐標系中,直線l與x軸、y軸分別交于點B(4,0)、C(0,3),點A為x軸負半軸上一點,AM⊥BC于點M交y軸于點N(0, ).已知拋物線y=ax2+bx+c經(jīng)過點A,B,C.
(1)求拋物線的函數(shù)式;
(2)連接AC,點D在線段BC上方的拋物線上,連接DC,DB,若△BCD和△ABC面積滿足S△BCD= S△ABC, 求點D的坐標;
(3)如圖2,E為OB中點,設F為線段BC上一點(不含端點),連接EF.一動點P從E出發(fā),沿線段EF以每秒3個單位的速度運動到F,再沿著線段PC以每秒5個單位的速度運動到C后停止.若點P在整個運動過程中用時最少,請直接寫出最少時間和此時點F的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,⊙與菱形在平面直角坐標系中,點的坐標為點的坐標為,點的坐標為,點在軸上,且點在點的右側(cè).
()求菱形的周長.
()若⊙沿軸向右以每秒個單位長度的速度平移,菱形沿軸向左以每秒個單位長度的速度平移,設菱形移動的時間為(秒),當⊙與相切,且切點為的中點時,連接,求的值及的度數(shù).
()在()的條件下,當點與所在的直線的距離為時,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為響應珠海環(huán)保城市建設,我市某污水處理公司不斷改進污水處理設備,新設備每小時處理污水量是原系統(tǒng)的1.5倍,原來處理1200m3污水所用的時間比現(xiàn)在多用10小時.
(1)原來每小時處理污水量是多少m2?
(2)若用新設備處理污水960m3,需要多長時間?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,每個小正方形的邊長都相等,三角形ABC的三個頂點都在格點(小正方形的頂點)上.
(1)平移三角形ABC,使頂點A平移到點D的位置,得到三角形DEF,請在圖中畫出三角形DEF;(注:點B的對應點為點E)
(2)若∠A=50°,則直線AC與直線DE相交所得銳角的度數(shù)為 °,依據(jù)是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分線.以O為圓心,OC為半徑作⊙O.
(1)求證:AB是⊙O的切線.
(2)已知AO交⊙O于點E,延長AO交⊙O于點D,tanD=,求的值.
(3)(3分)在(2)的條件下,設⊙O的半徑為3,求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com