相關(guān)習(xí)題
 0  354033  354041  354047  354051  354057  354059  354063  354069  354071  354077  354083  354087  354089  354093  354099  354101  354107  354111  354113  354117  354119  354123  354125  354127  354128  354129  354131  354132  354133  354135  354137  354141  354143  354147  354149  354153  354159  354161  354167  354171  354173  354177  354183  354189  354191  354197  354201  354203  354209  354213  354219  354227  366461 

科目: 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D,E分別是邊AB,AC的中點(diǎn),過點(diǎn)CCFABDE的延長線于點(diǎn)F,連接BE

1)求證:四邊形BCFD是平行四邊形.

2)當(dāng)AB=BC時(shí),若BD=2,BE=3,求AC的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】某種水彩筆,在購買時(shí),若同時(shí)額外購買筆芯,每個(gè)優(yōu)惠價(jià)為3元,使用期間,若備用筆芯不足時(shí)需另外購買,每個(gè)5元.現(xiàn)要對(duì)在購買水彩筆時(shí)應(yīng)同時(shí)購買幾個(gè)筆芯作出選擇,為此收集了這種水彩筆在使用期內(nèi)需要更換筆芯個(gè)數(shù)的30組數(shù)據(jù).

水筆支數(shù)

4

6

8

7

5

需要更換的筆芯個(gè)數(shù)x

7

8

9

10

11

設(shè)x表示水彩筆在使用期內(nèi)需要更換的筆芯個(gè)數(shù),y表示每支水彩筆在購買筆芯上所需要的費(fèi)用(單位:元),n表示購買水彩筆的同時(shí)購買的筆芯個(gè)數(shù).

1)若x9,n7,則y   ;若x7,n9,則y   ;

2)若n9,用含x的的代數(shù)式表示y的取值;

3)假設(shè)這30支筆在購買時(shí),每支筆同時(shí)購買9個(gè)筆芯,或每支筆同時(shí)購買10個(gè)筆芯,分別計(jì)算這30支筆在購買筆芯時(shí)所需的費(fèi)用,以費(fèi)用最省作為選擇依據(jù),判斷購買一支水彩筆的同時(shí)應(yīng)購買9個(gè)還是10個(gè)筆芯?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四邊形ACDE是證明勾股定理時(shí)用到的一個(gè)圖形,ab、cRtABCRtBED邊長,易知AE=c,這時(shí)我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.

請(qǐng)解決下列問題

寫出一個(gè)“勾系一元二次方程”;

求證關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實(shí)數(shù)根;

x=1是“勾系一元二次方程”ax+cx+b=0的一個(gè)根且四邊形ACDE的周長是,ABC面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知正方形ABCD,EAB延長線上一點(diǎn),FDC延長線上一點(diǎn),且滿足BF=EF,將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得FG,過點(diǎn)BFG的平行線,交DA的延長線于點(diǎn)N,連接NG.

求證:BE=2CF;

試猜想四邊形BFGN是什么特殊的四邊形并對(duì)你的猜想加以證明.

查看答案和解析>>

科目: 來源: 題型:

【題目】在“宏揚(yáng)傳統(tǒng)文化,打造書香校園”活動(dòng)中,學(xué)校計(jì)劃開展四項(xiàng)活動(dòng):“A﹣國學(xué)誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書法”,要求每位同學(xué)必須且只能參加其中一項(xiàng)活動(dòng),學(xué)校為了了解學(xué)生的意愿,隨機(jī)調(diào)查了部分學(xué)生,結(jié)果統(tǒng)計(jì)如下:

(1)如圖,希望參加活動(dòng)C占20%,希望參加活動(dòng)B占15%,則被調(diào)查的總?cè)藬?shù)為 人,扇形統(tǒng)計(jì)圖中,希望參加活動(dòng)D所占圓心角為 度,根據(jù)題中信息補(bǔ)全條形統(tǒng)計(jì)圖.

(2)學(xué),F(xiàn)有800名學(xué)生,請(qǐng)根據(jù)圖中信息,估算全校學(xué)生希望參加活動(dòng)A有多少人?

查看答案和解析>>

科目: 來源: 題型:

【題目】西安市某中學(xué)九年級(jí)組織了一次數(shù)學(xué)計(jì)算比賽(禁用計(jì)算器),每班選25名同學(xué)參加比賽,成績分為A,B,C,D四個(gè)等級(jí),其中A等級(jí)得分為100分,B等級(jí)得分為85分,C等級(jí)得分為75分,D等級(jí)得分為60分,數(shù)學(xué)教研組將九年級(jí)一班和二班的成績整理并繪制成如下的統(tǒng)計(jì)圖,請(qǐng)根據(jù)提供的信息解答下列問題.

(1)把一班競(jìng)賽成績統(tǒng)計(jì)圖補(bǔ)充完整.

(2)填表:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

一班

   

   

85

二班

84

75

   

(3)請(qǐng)從以下給出的兩個(gè)方面對(duì)這次比賽成績的結(jié)果進(jìn)行①從平均數(shù)、眾數(shù)方面來比較一班和二班的成績;②從B級(jí)以上(包括B級(jí))的人數(shù)方面來比較一班和二班的成績.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖為放置在水平桌面上的臺(tái)燈的平面示意圖,燈臂AO長為40cm,與水平面所形成的夾角∠OAM75°.由光源O射出的邊緣光線OC,OB與水平面所形成的夾角∠OCA,OBA分別為90°30°,求該臺(tái)燈照亮水平面的寬度BC(不考慮其他因素,結(jié)果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26,).

查看答案和解析>>

科目: 來源: 題型:

【題目】在有些情況下,不需要計(jì)算出結(jié)果也能把絕對(duì)值符號(hào)去掉.例如:|6+7|6+7;|67|76|76|76;|67|6+7

1)根據(jù)上面的規(guī)律,把下列各式寫成去掉絕對(duì)值符號(hào)的形式:

|721|   ;②|0.8|   ;③||   

2)數(shù)a在數(shù)軸上的位置如圖所示,則|a2.5|   

Aa2.5

B.2.5a

Ca+2.5

D.﹣a2.5

3)利用上述介紹的方法計(jì)算或化簡:

||+||||+;

||+||||+2),其中a2

查看答案和解析>>

科目: 來源: 題型:

【題目】在四邊形ABCD中,對(duì)角線ACBD交于點(diǎn)O,下列各組條件,其中不能判定四邊形ABCD是平行四邊形的是( 。

A. OAOCOBODB. OAOC,ABCD

C. ABCDOAOCD. ADB=∠CBD,∠BAD=∠BCD

查看答案和解析>>

科目: 來源: 題型:

【題目】某市創(chuàng)建綠色發(fā)展模范城市,針對(duì)境內(nèi)長江段兩種主要污染源:生活污水和沿江工廠污染物排放,分別用生活污水集中處理(下稱甲方案)和沿江工廠轉(zhuǎn)型升級(jí)(下稱乙方案)進(jìn)行治理,若江水污染指數(shù)記為Q,沿江工廠用乙方案進(jìn)行一次性治理(當(dāng)年完工),從當(dāng)年開始,所治理的每家工廠一年降低的Q值都以平均值n計(jì)算.第一年有40家工廠用乙方案治理,共使Q值降低了12.經(jīng)過三年治理,境內(nèi)長江水質(zhì)明顯改善.

(1)求n的值;

(2)從第二年起,每年用乙方案新治理的工廠數(shù)量比上一年都增加相同的百分?jǐn)?shù)m,三年來用乙方案治理的工廠數(shù)量共190家,求m的值,并計(jì)算第二年用乙方案新治理的工廠數(shù)量;

(3)該市生活污水用甲方案治理,從第二年起,每年因此降低的Q值比上一年都增加個(gè)相同的數(shù)值a.在(2)的情況下,第二年,用乙方案所治理的工廠合計(jì)降低的Q值與當(dāng)年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案