科目: 來源: 題型:
【題目】檢修小組從A地出發(fā),在東西路上檢修線路,若規(guī)定向東行駛的路程為正數,向西行駛的路程為負數,一天中行駛記錄(單位;千米)如下:
(1)收工時檢修小組在A地的哪側,距A地多遠?
(2)若每千米耗油0.3升,從出發(fā)到收工共耗油多少升?
查看答案和解析>>
科目: 來源: 題型:
【題目】 某單位在二月份準備組織部分員工到北京旅游,現聯系了甲、乙兩家旅行社,兩家旅行社報價均為2000元/人,兩家旅行社同時都對10人以上的團體推出了優(yōu)惠舉措:甲旅行社對每位員工七五折優(yōu)惠;而乙旅行社是免去一位帶隊管理員工的費用,其余員工八折優(yōu)惠.
(1)如果設參加旅游的員工共有a(a)人,則甲旅行社的費用為 元,乙旅行社的費用為 元;(用含a的代數式表示,并化簡.)
(2)假如這個單位現組織包括管理員工在內的共20名員工到北京旅游,該單位選擇哪一家旅行社比較優(yōu)惠?請說明理由;
(3)如果計劃在二月份外出旅游七天,設最中間一天的日期為m.
①這七天的日期之和為 ;(用含m的代數式表示,并化簡.)
②假如這七天的日期之和為63的倍數,則他們可能于二月幾號出發(fā)?(寫出所有符合條件的可能性,并寫出簡單的計算過程.)
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)計算:.
(2)如圖,一次函數y=x+b與反比例函數在第一象限的圖象交于點B,且點B的橫坐標為1,過點B作y軸的垂線,C為垂足,若S△BCO= ,求一次函數和反比例函數的解析式.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據相似三角形的對應邊成比例,即可求得的長,然后利用三角函數的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義一種新運算:觀察下列式:
1⊙3=1×4+3=7 3⊙(﹣1)=3×4﹣1=11 5⊙4=5×4+4=24 4⊙(﹣3)=4×4﹣3=13
(1)請你想一想:a⊙b= ;
(2)若a≠b,那么a⊙b b⊙a(填入“=”或“≠” )
(3)若a⊙(﹣2b)=3,請計算 (a﹣b)⊙(2a+b)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點,點P在線段AD上,過P作PF⊥AE于F,設PA=x.
(1)求證:△PFA∽△ABE;
(2)當點P在線段AD上運動時,設PA=x,是否存在實數x,使得以點P,F,E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;
(3)探究:當以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點時,請直接寫出x滿足的條件: .
備用圖
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A、C、F在坐標軸上,E是OA的中點,四邊形AOCB是矩形,四邊形BDEF是正方形,若點C的坐標為(3,0), 則點D的坐標為( )
A. (1, 3)B. (1,)C. (1,)D. (,)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖:在數軸上A點表示數a,B點示數b,C點表示數c,b是最小的正整數,且a,b滿足 +(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若將數軸折疊,使得A點與C點重合,則點B與數 表示的點重合.
(3) 點A,B,C開始在數軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數式表示)
(4) 請問:3BC-2AB的值是否隨著時間t的變化而改變? 若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目: 來源: 題型:
【題目】將直線y=2x-3向右平移2個單位。再向上平移2個單位后,得到直線y=kx+b.則下列關于直線y=kx+b的說法正確的是( )
A. 與y軸交于(0,-5)B. 與x軸交于(2,0)
C. y隨x的增大而減小D. 經過第一、二、四象限
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,將一條數軸在原點O和點B處各折一下,得到一條“折線數軸”.圖中點A表示﹣10,點B表示10,點C表示18,我們稱點A和點C在數軸上相距28個長度單位,動點P從點A出發(fā),以2單位/秒的速度沿著“折線數軸”的正方向運動,從點O運動到點B期間速度變?yōu)樵瓉淼囊话;點P從點A出發(fā)的同時,點Q從點C出發(fā),以1單位/秒的速度沿著“折線數軸”的負方向運動,當點P到達B點時,點P、Q均停止運動.設運動的時間為t秒.問:
(1)用含t的代數式表示動點P在運動過程中距O點的距離;
(2)P、Q兩點相遇時,求出相遇時間及相遇點M所對應的數是多少?
(3)是否存在P、O兩點在數軸上相距的長度與Q、B兩點在數軸上相距的長度相等時?若存在,請直接寫出t的取值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com