科目: 來源: 題型:
【題目】已知點M(n,﹣n )在第二象限,過點M的直線y=kx+b(0<k<1)分別交x軸、y軸于點A,B,過點M作MN⊥x軸于點N,則下列點在線段AN的是( 。
A. ((k﹣1)n,0) B. ((k+)n,0)) C. (,0) D. ((k+1)n,0)
查看答案和解析>>
科目: 來源: 題型:
【題目】計算:
(1)3+(﹣)﹣(﹣)+2.
(2)(﹣5)×6+(﹣125)÷(﹣5).
(3)(+)×(﹣48).
(4)﹣12018×[(﹣2)5﹣32﹣÷(﹣)]﹣2.5.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx﹣2與x軸交于點A(﹣1,0),B(4,0)兩點,與y軸交于點C,經過點B的直線交y軸于點E(0,2).
(1)求該拋物線的解析式;
(2)如圖2,過點A作BE的平行線交拋物線于另一點D,點P是拋物線上位于線段AD下方的一個動點,連結PA,EA,ED,PD,求四邊形EAPD面積的最大值;
(3)如圖3,連結AC,將△AOC繞點O逆時針方向旋轉,記旋轉中的三角形為△A′OC′,在旋轉過程中,直線OC′與直線BE交于點Q,若△BOQ為等腰三角形,請直接寫出點Q的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】認真閱讀下面的材料,完成有關問題.
材料:在學習絕對值時,老師教過我們絕對值的幾何含義,如|5﹣3|表示5、3在數(shù)軸上對應的兩點之間的距離;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在數(shù)軸上對應的兩點之間的距離;|5|=|5﹣0|,所以|5|表示5在數(shù)軸上對應的點到原點的距離.一般地,點A、B在數(shù)軸上分別表示有理數(shù)a、b,那么A、B之間的距離可表示為|a﹣b|.
問題(1):點A、B、C在數(shù)軸上分別表示有理數(shù)﹣5、﹣1、3,那么A到B的距離是 ,
A到C的距離是 . (直接填最后結果).
問題(2):點A、B、C在數(shù)軸上分別表示有理數(shù)x、﹣2、1,那么A到B的距離與A到C的距離之和可表示為 (用含絕對值的式子表示).
問題(3):利用數(shù)軸探究:①找出滿足|x﹣3|+|x+1|=6的x的所有值是 ;
②設|x﹣3|+|x+1|=p,當x的值取在不小于﹣1且不大于3的范圍時,p的值是不變的,而且是p的最小值,這個最小值是 ;當x的值取在 的范圍時,|x|+|x﹣2|的最小值是 .
問題(4):求|x﹣3|+|x﹣2|+|x+1|的最小值以及此時x的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形是矩形紙片且,對折矩形紙片,使與重合,折痕為,展平后再過點折疊矩形紙片,使點落在上的點處,折痕與相交于點,再次展開,連接,.
(1)連接,求證:是等邊三角形;
(2)求,的長;
(3)如圖,連接將沿折疊,使點落在點處,延長交邊于點,已知,求的長?
查看答案和解析>>
科目: 來源: 題型:
【題目】陸老師去水果批發(fā)市場采購蘋果,他看中了A,B兩家蘋果,這兩家蘋果品質一樣,零售價都我6元/千克,批發(fā)價各不相同.
A家規(guī)定:批發(fā)數(shù)量不超過1000千克,按零售價的92%優(yōu)惠;批發(fā)數(shù)量不超過2000千克,按零售價的90%優(yōu)惠;超過2000千克的按零售價的88%優(yōu)惠.
B家的規(guī)定如下表:
數(shù)量范圍(千克) | 0~500部分 | 500以上~1500 | 1500以上~2500部分 | 2500以上部分 |
價格補貼 | 零售價的95% | 零售價的85% | 零售價的75% | 零售價的70% |
(1)如果他批發(fā)700千克蘋果,則他在A、B兩家批發(fā)分別需要多少元?
(2)如果他批發(fā)x千克蘋果(1500<x<2000),請你分別用含x的代數(shù)式表示他在A、B兩家批發(fā)所需的費用;
(3)A、B兩店在互相競爭中開始了互懟,B說A店的蘋果總價有不合理的,有時候買的少反而貴,忽悠消費者;A說B的總價計算太麻煩,把消費者都弄糊涂了;旁邊陸老師聽完,提出兩個問題希望同學們幫忙解決:
問題1:能否舉例說明A店買的多反而便宜?
問題2:B店老板比較聰明,在平時工作中發(fā)現(xiàn)有巧妙的方法:總價=購買數(shù)量×單價+價格補貼;
注:不同的單價,補貼價格也不同;只需提前算好即可填下表:
數(shù)量范圍(千克) | 0~500部分 | 500以上~1500 | 1500以上~2500 | 2500以上部分 |
價格補貼 | 0元 | 300 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知A=﹣xy+x+1,B=4x+3y,
(1)當x=﹣2, y=0.6時,求A+2B的值;
(2)若代數(shù)式2A﹣B的結果與字母y的取值無關,求x的值
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,Rt△ABC中,∠B=90°,∠CAB=30°,它的頂點A的坐標為(10,0),頂點B的坐標為(5,5),AB=10,點P從點A出發(fā),沿A→B→C的方向勻速運動,同時點Q從點D(0,2)出發(fā),沿y軸正方向以相同速度運動,當點P到達點C時,兩點同時停止運動,設運動的時間為t秒.
(1)當點P在AB上運動時,△OPQ的面積S(平方單位)與時間t(秒)之間的函數(shù)圖象為拋物線的一部分,(如圖②),則點P的運動速度為 ;
(2)求(1)中面積S與時間t之間的函數(shù)關系式及面積S的最大值及S取最大值時點P的坐標;
(3)如果點P,Q保持(1)中的速度不變,那么點P沿AB邊運動時,∠OPQ的大小隨著時間t的增大而增大;沿著BC邊運動時,∠OPQ的大小隨著時間t的增大而減小,當點P沿這兩邊運動時,使∠OPQ=90°的點P有 個.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)計算下列各題:
①2x2﹣4x+1+2x﹣5x2
②(8x﹣3x2)﹣5xy﹣2(3xy﹣2x2)
(2)先化簡,再求值:(3x2y+5x)﹣[x2y﹣4(x﹣x2y)],其中(x+2)2+|y﹣3|=0
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com